Принцип работы электронного счетчика электроэнергии

Принцип работы электронного счетчика

Для расчёта электрической энергии, потребляемой за определённый период времени, необходимо интегрировать во времени мгновенные значения активной мощности. Для синусоидального сигнала мощность равна произведению напряжения на ток в сети в данный момент времени. На этом принципе работает любой счётчик электрической энергии. На рис. 1 показана блок-схема электромеханического счётчика.

Рис. 1. Блок-схема электромеханического счетчика электрической энергии

Реализация цифрового счётчика электрической энергии (рис. 2) требует специализированных ИС, способных производить перемножение сигналов и предоставлять полученную величину в удобной для микроконтроллера форме. Например, преобразователь активной мощности — в частоту следования импульсов. Общее количество пришедших импульсов, подсчитываемое микроконтроллером, прямо пропорционально потребляемой электроэнергии.

Рис. 2. Блок-схема цифрового счетчика электрической энергии

Не менее важную роль играют всевозможные сервисные функции, такие как дистанционный доступ к счётчику, к информации о накопленной энергии и многие другие. Наличие цифрового дисплея, управляемого от микроконтроллера, позволяет программно устанавливать различные режимы вывода информации, например, выводить на дисплей информацию о потреблённой энергии за каждый месяц, по различным тарифам и так далее.

Для выполнения некоторых нестандартных функций, например, согласования уровней, используются дополнительные ИС. Сейчас начали выпускать специализированные ИС — преобразователи мощности в частоту — и специализированные микроконтроллеры, содержащие подобные преобразователи на кристалле. Но, зачастую, они слишком дороги для использования в коммунально-бытовых индукционных счётчиках. Поэтому многие мировые производители микроконтроллеров разрабатывают специализированные микросхемы, предназначенные для такого применения.

Перейдём к анализу построения простейшего варианта цифрового счётчика на наиболее дешёвом (менее доллара) 8-разрядном микроконтроллере Motorola. В представленном решении реализованы все минимально необходимые функции. Оно базируется на использовании недорогой ИС преобразователя мощности в частоту импульсов КР1095ПП1 и 8-разрядного микроконтроллера MC68HC05KJ1 (рис. 3). При такой структуре микроконтроллеру требуется суммировать число импульсов, выводить информацию на дисплей и осуществлять её защиту в различных аварийных режимах. Рассматриваемый счётчик фактически представляет собой цифровой функциональный аналог существующих механических счётчиков, приспособленный к дальнейшему усовершенствованию.

Рис. 3. Основные узлы простейшего цифрового счетчика электроэнергии

Сигналы, пропорциональные напряжению и току в сети, снимаются с датчиков и поступают на вход преобразователя. ИС преобразователя перемножает входные сигналы, получая мгновенную потребляемую мощность. Этот сигнал поступает на вход микроконтроллера, преобразующего его в Вт·ч и, по мере накопления сигналов, изменяющего показания счётчика. Частые сбои напряжения питания приводят к необходимости использования EEPROM для сохранения показаний счётчика. Поскольку сбои по питанию являются наиболее характерной аварийной ситуацией, такая защита необходима в любом цифровом счётчике.

Алгоритм работы программы (рис. 4) для простейшего варианта такого счётчика довольно прост. При включении питания микроконтроллер конфигурируется в соответствии с программой, считывает из EEPROM последнее сохранённое значение и выводит его на дисплей. Затем контроллер переходит в режим подсчёта импульсов, поступающих от ИС преобразователя, и, по мере накопления каждого Вт·ч, увеличивает показания счётчика.

Рис. 4. Алгоритм работы программы

При записи в EEPROM значение накопленной энергии может быть утеряно в момент отключения напряжения. По этим причинам значение накопленной энергии записывается в EEPROM циклически друг за другом через определённое число изменений показаний счётчика, заданное программно, в зависимости от требуемой точности. Это позволяет избежать потери данных о накопленной энергии. При появлении напряжения микроконтроллер анализирует все значения в EEPROM и выбирает последнее. Для минимальных потерь достаточно записывать значения с шагом 100 Вт·ч. Эту величину можно менять в программе.

Схема цифрового вычислителя показана на рис. 5. К разъёму X1 подключается напряжение питания 220 В и нагрузка. С датчиков тока и напряжения сигналы поступают на микросхему преобразователя КР1095ПП1 с оптронной развязкой частотного выхода. Основу счётчика составляет микроконтроллер MC68HC05KJ1 фирмы Motorola, выпускаемый в 16-выводном корпусе (DIP или SOIC) и имеющий 1,2 Кбайт ПЗУ и 64 байт ОЗУ. Для хранения накопленного количества энергии при сбоях по питанию используется EEPROM малого объёма 24С00 (16 байт) фирмы Microchip. В качестве дисплея используется 8-разрядный 7-сегментный ЖКИ, управляемый любым недорогим контроллером, обменивающийся с центральным микроконтроллером по протоколу SPI или I2C и подключаемый к разъёму Х2.

Реализация алгоритма потребовала менее 1 Кбайт памяти и менее половины портов ввода/вывода микроконтроллера MC68HC05KJ1. Его возможностей достаточно, чтобы добавить некоторые сервисные функции, например, объединение счётчиков в сеть по интерфейсу RS-485. Эта функция позволит получать информацию о накопленной энергии в сервисном центре и отключать электричество в случае отсутствия оплаты. Сетью из таких счётчиков можно оборудовать жилой многоэтажный дом. Все показания по сети будут поступать в диспетчерский центр.

Читайте также:
Профнастил для забора: виды, характеристики, особенности выбора

Определённый интерес представляет собой семейство 8-разрядных микроконтроллеров с расположенной на кристалле FLASH-памятью. Поскольку его можно программировать непосредственно на собранной плате, обеспечивается защищённость программного кода и возможность обновления ПО без монтажных работ.

Рис. 5. Цифровой вычислитель для цифрового счетчика электроэнергии

Ещё более интересен вариант счётчика электроэнергии без внешней EEPROM и дорогостоящей внешней энергонезависимой ОЗУ. В нём можно при аварийных ситуациях фиксировать показания и служебную информацию во внутреннюю FLASH-память микроконтроллера. Это к тому же обеспечивает конфиденциальность информации, чего нельзя сделать при использовании внешнего кристалла, не защищённого от несанкционированного доступа. Такие счётчики электроэнергии любой сложности можно реализовать с помощью микроконтроллеров фирмы Motorola семейства HC08 с FLASH-памятью, расположенной на кристалле.

Переход на цифровые автоматические системы учёта и контроля электроэнергии — вопрос времени. Преимущества таких систем очевидны. Цена их будет постоянно падать. И даже на простейшем микроконтроллере такой цифровой счётчик электроэнергии имеет очевидные преимущества: надёжность за счёт полного отсутствия трущихся элементов; компактность; возможность изготовления корпуса с учётом интерьера современных жилых домов; увеличение периода поверок в несколько раз; ремонтопригодность и простота в обслуживании и эксплуатации. При небольших дополнительных аппаратных и программных затратах даже простейший цифровой счётчик может обладать рядом сервисных функций, отсутствующих у всех механических, например, реализация многотарифной оплаты за потребляемую энергию, возможность автоматизированного учёта и контроля потребляемой электроэнергии.

none Опубликована: 2006 г. 0 0

Вознаградить Я собрал 0 0

Обзор и устройство современных счётчиков электроэнергии

За последнее время на смену индукционным счётчикам электроэнергии пришли электронные. В данных счётчиках счётный механизм приводится во вращение не с помощью катушек напряжения и тока, а с помощью специализированной электроники. Кроме того, средством счёта и отображения показаний может являться микроконтроллер и цифровой дисплей соответственно. Всё это позволило сократить габаритные размеры приборов, а также, снизить их стоимость.

В состав практически любого электронного счётчика входит одна или несколько специализированных вычислительных микросхем, выполняющие основные функции по преобразованию и измерению. На вход такой микросхемы поступает информация о напряжении и силе тока с соответствующих датчиков в аналоговом виде. Внутри микросхемы данная информация оцифровывается и преобразуется определённым образом. В результате, на выходе микросхемы формируются импульсные сигналы, частота которых пропорциональна текущей потребляемой мощности нагрузки, подключенной к счётчику. Импульсы поступают на счётный механизм, который представляет собой электромагнит, согласованный с зубчатыми передачами на колёсики с цифрами. В случае с более дорогостоящими счётчиками с цифровым дисплеем применяется дополнительный микроконтроллер. Он подключается к вышесказанной микросхеме и к цифровому дисплею по определённому интерфейсу, ведёт накопление результата измерения электроэнергии в энергонезависимую память, а также, обеспечивает дополнительный функционал прибора.

Рассмотрим несколько подобных микросхем и моделей счётчиков, которые мне попадались под руку.

Ниже на рисунке в разобранном виде изображён один из наиболее дешёвых и популярных однофазных счётчиков «НЕВА 103». Как видно из рисунка, устройство счётчика довольно простое. Основная плата состоит из специализированной микросхемы, её обвески и узла стабилизатора питания на основе балластового конденсатора. На дополнительной плате размещён светодиод, индицирующий потребляемую нагрузку. В данном случае – 3200 импульсов на 1 кВт*ч. Также есть возможность снимать импульсы с зелёного клеммника, расположенного вверху счётчика. Счётный механизм состоит из семи колёсиков с цифрами, редуктора и электромагнита. На нём отображается посчитанная электроэнергия с точностью до десятых кВт*ч. Как видно из рисунка, редуктор имеет передаточное отношение 200:1. По моим замечаниям, это означает «200 импульсов на 1 кВт*ч». То есть, 200 импульсов, поданных на электромагнит, поспособствуют прокрутке последнего красного колёсика на 1 полный оборот. Это соотношение кратно соотношению для светодиодного индикатора, что весьма не случайно. Редуктор с электромагнитом размещён в металлической коробке под двумя экранами с целью защиты от вмешательства внешним магнитным полем.

В данной модели счётчика применяется микросхема ADE7754. Рассмотрим её структуру.

На пины 5 и 6 поступает аналоговый сигнал с токового шунта, который расположен на первой и второй клеммах счётчика (на фотографии в этом месте видно повреждение). На пины 8 и 7 поступает аналоговый сигнал, пропорциональный напряжению в сети. Через пины 16 и 15 есть возможность устанавливать усиление внутреннего операционного усилителя, отвечающий за ток. Оба сигнала с помощью узлов АЦП преобразуются в цифровой вид и, проходя определённую коррекцию и фильтрацию, поступают на умножитель. Умножитель перемножает эти два сигнала, в результате чего, согласно законам физики, на его выходе получается информация о текущей потребляемой мощности. Данный сигнал поступает на специализированный преобразователь, который формирует готовые импульсы на счётное устройство (пины 23 и 24) и на контрольный светодиод и счётный выход (пин 22). Через пины 12, 13 и 14 конфигурируются частотные множители и режимы вышеперечисленных импульсов.

Читайте также:
Нужно ли изолировать молниезащиту от металлочерепицы?

Стандартная схема обвески практически представляет собой схему рассматриваемого счётчика.

Общий минусовой провод соединён с нулём 220В. Фаза поступает на пин 8 через делитель на резисторах, служащий для снижения уровня измеряемого напряжения. Сигнал с шунта поступает на соответствующие входы микросхемы также через резисторы. В данной схеме, предназначенной для теста, конфигурационные пины 12-14 подключены к логической единице. В зависимости от модели счётчика, они могут иметь разную конфигурацию. В данном кратком обзоре эта информация не столь важна. Светодиодный индикатор подключен к соответствующему пину последовательно вместе с оптической развязкой, на другой стороне которой подключается клеммник для снятия счётной информации (К7 и К8).

Из этого же семейства микросхем существуют похожие аналоги для трёхфазных измерений. Вероятнее всего, они встраиваются в дешёвые трёхфазные счётчики. В качестве примера на рисунке ниже представлена структура одной из таких микросхем, а именно ADE7752.

Вместо двух узлов АЦП, здесь применено их 6: по 2 на каждую фазу. Минусовые входы ОУ напряжения объединены вместе и выводятся на пин 13 (ноль). Каждая из трёх фаз подключается к своему плюсовому входу ОУ (пины 14, 15, 16). Сигналы с токовых шунтов по каждой фазе подключаются по аналогии с предыдущим примером. По каждой из трёх фаз с помощью трёх умножителей выделяется сигнал, характеризующий текущую мощность. Эти сигналы, кроме фильтров, проходят через дополнительные узлы, которые активируются через пин 17 и служат для включения операции математического модуля. Затем эти три сигнала суммируются, получая, таким образом, суммарную потребляемую мощность по всем фазам. В зависимости от двоичной конфигурации пина 17, сумматор суммирует либо абсолютные значения трёх сигналов, либо их модули. Это необходимо для тех или иных тонкостей измерения электроэнергии, подробности которых здесь не рассматриваются. Данный сигнал поступает на преобразователь, аналогичный предыдущему примеру с однофазным измерителем. Его интерфейс также практически аналогичен.

Стоит отметить, что вышеописанные микросхемы служат для измерения активной энергии. Более дорогие счётчики способны измерять как активную, так и реактивную энергию. Рассмотрим, например, микросхему ADE7754. Как видно из рисунка ниже, её структура намного сложнее структуры микросхем из предыдущих примеров.

Микросхема измеряет активную и реактивную трёхфазную электроэнергию, имеет SPI интерфейс для подключения микроконтроллера и выход CF (пин 1) для внешней регистрации активной электроэнергии. Вся остальная информация с микросхемы считывается микроконтроллером через интерфейс. Через него же осуществляется конфигурация микросхемы, в частности, установка многочисленных констант, отражённых на структурной схеме. Как следствие, данная микросхема, в отличие от предыдущих двух примеров, не является автономной, и для построения счётчика на базе этой микросхемы требуется микроконтроллер. Можно зрительно в структурной схеме пронаблюдать узлы, отвечающие по отдельности за измерение активной и реактивной энергии. Здесь всё гораздо сложнее, чем в предыдущих двух примерах.

В качестве примера рассмотрим ещё один интересный прибор: трёхфазный счётчик «Энергомера ЦЭ6803В Р32». Как видно из фотографии ниже, данный счётчик ещё не эксплуатировался. Он мне достался в неопломбированном виде с небольшими механическими повреждениями снаружи. При всё при этом он находился полностью в рабочем состоянии.

Как можно заметить, глядя на основную плату, прибор состоит из трёх одинаковых узлов (справа), цепей питания и микроконтроллера. С нижней стороны основной платы расположены три одинаковых модуля на отдельных платах по одному на каждый узел. Данные модули представляют собой микросхемы AD71056 с минимальной необходимой обвеской. Эта микросхема является однофазным измерителем электроэнергии.

Модули запаяны вертикально на основную плату. Витыми проводами к данным модулям подключаются токовые шунты.

За пару часов удалось срисовать электрическую схему прибора. Рассмотрим её более детально.

Читайте также:
Ремонт пола на кухне: основные моменты

Справа на общей схеме изображена схема однофазного модуля, о котором говорилось выше. Микросхема D1 этого модуля AD71056 по назначению похожа на микросхему ADE7755, которая рассматривалась ранее. На четвёртый контакт модуля поступает питание 5В, на третий – сигнал напряжения. Со второго контакта снимается информация в виде импульсов о потребляемой мощности через выход CF микросхемы D1. Сигнал с токовых шунтов поступает через контакты X1 и X2. Конфигурационные входы микросхемы SCF, S1 и S0 в данном случае расположены на пинах 8-10 и сконфигурированы в «0,1,1».

Каждый из трёх таких модулей обслуживает соответственно каждую фазу. Сигнал для измерения напряжения поступает на модуль через цепочку из четырёх резисторов и берётся с нулевой клеммы («N»). При этом стоит обратить внимание, что общим проводом для каждого модуля является соответствующая ему фаза. А вот, общий провод всей схемы соединён с нулевой клеммой. Данное хитрое решение по обеспечению питанием каждого узла схемы расписано ниже.

Каждая из трёх фаз поступает на стабилитроны VD4, VD5 и VD6 соответственно, затем на балластовые RC цепи R1C1, R2C2 и R3C3, затем – на стабилитроны VD1, VD2 и VD3, которые соединены своими анодами с нулём. С первых трёх стабилитронов снимается напряжение питания для каждого модуля U3, U2 и U1 соответственно, выпрямляется диодами VD10, VD11 и VD12. Микросхемы-регуляторы D1-D3 служат для получения напряжения питания 5В. Со стабилитронов VD1-VD3 снимается напряжение питания общей схемы, выпрямляется диодами VD7-VD9, собирается в одну точку и поступает на регулятор D4, откуда снимается 5В.

Общую схему составляет микроконтроллер (МК) D5 PIC16F720. Очевидно, он служит для сбора и обработки информации о текущей потребляемой мощности, поступающей с каждого модуля в виде импульсов. Эти сигналы поступают с модулей U3, U2 и U1 на пины МК RA2, RA4 и RA5 через оптические развязки V1, V2 и V3 соответственно. В результате на пинах RC1 и RC2 МК формирует импульсы для механического счётного устройства M1. Оно аналогично устройству, рассматриваемому ранее, и также имеет соотношение 200:1. Сопротивление катушки высокое и составляет порядка 500 Ом, что позволяет подключать её непосредственно к МК без дополнительных транзисторных цепей. На пине RC0 МК формирует импульсы для светодиодного индикатора HL2 и для внешнего импульсного выхода на разъёме XT1. Последний реализуется через оптическую развязку V4 и транзистор VT1. В данной модели счётчика соотношение составляет 400 импульсов на 1 кВт*ч. На практике при испытании данного счётчика (после небольшого ремонта) было замечено, что электромагнитная катушка счётного механизма срабатывает синхронно со вспышкой светодиода HL2, но через раз (в два раза реже). Это подтверждает соответствие соотношений 400:1 для индикатора и 200:1 для счётного механизма, о чём говорилось ранее.

Слева на плате расположено место для 10-пинового разъёма XS1, который служит для перепрошивки, а также, для UART интерфейса МК.

Таким образом, трёхфазный счётчик «Энергомера ЦЭ6803В Р32» состоит из трёх однофазных измерительных микросхем и микроконтроллера, обрабатывающий информацию с них.

В заключение стоит отметить, что существует ряд моделей счётчиков куда более сложней по своей функциональности. К примеру, счётчики с удалённым контролем показаний по электролинии, или даже через модуль мобильной связи. В данной статье я рассмотрел только простейшие модели и основные принципы построения их электрических схем. Заранее приношу извинения за возможно неправильную терминологию в тексте, ибо я старался излагать простым языком.

Принцип работы электросчетчика

В каждую электрическую сеть квартиры или частного дома подключается электросчетчик, учитывающий потребленную электроэнергию. Отличительной особенностью данного прибора является его последовательное подключение. Это позволяет определять в полном объеме количество тока, проходящего через его обмотки. Принцип работы электросчетчика зависит от того, к какому типу относится тот или иной прибор.

Какие виды электросчетчиков бывают

В быту используются три вида счетчиков:

  1. Механические или индукционные, несмотря на простоту и дешевизну, они отличаются большими погрешностями, невозможностью тарификации и другими недостатками.
  2. Электронные счетчики обладают явными преимуществами в виде высокой точности, удобного интерфейса и многих других полезных функций.
  3. Третий вид приборов учета относится к гибридным устройствам, в которых имеется механическая и электронная часть. Они используются достаточно редко, поэтому более подробно следует рассмотреть два первых типа электросчетчиков.
Читайте также:
Натяжные потолки: спайка, криволинейная спайка двух цветов, потолки со спайкой, спаянные натяжные потолки в 2 цвета, полотна в два цвета

Принцип работы индукционного счетчика

Еще совсем недавно индукционные счетчики были неотъемлемой частью электрических сетей в квартирах. Счетное устройство в этих приборах представлено вращающимся алюминиевым диском и цифровыми барабанами, отображающими показатели расхода электроэнергии в реальном времени.

Принцип работы электросчетчика

Принцип действия подобных устройств достаточно простой. Электромагнитное поле, возникающее в катушках счетчика, взаимодействует с диском, выполняющим функцию подвижного токопроводящего элемента. В однофазном индукционном счетчике выполняется параллельное подключение одной из катушек к обмотке напряжения, которая служит сетью переменного тока. Другая катушка подключается последовательно на участке между обмоткой тока или нагрузкой и генератором электроэнергии.

Действие токов, протекающих по обмоткам, приводит к созданию переменных магнитных потоков, пересекающих вращающийся диск. Их величина составляет пропорцию между потребляемым током и входным напряжением. В соответствии с законом электромагнитной индукции в самом диске происходит возникновение вихревых токов, протекающих по направлению магнитных потоков.

Вихревые токи и магнитные потоки начинают взаимодействовать между собой в диске. В результате, появляется электромеханическая сила, которая и приводит к созданию вращающегося момента. Таким образом, возникает пропорция между полученным вращающимся моментом и произведением двух магнитных потоков, возникающих в обмотках тока и напряжения, умноженных на синус сдвига фазы между ними.

Нормальная работа индукционного электросчетчика возможна только при условии фазового сдвига, равного 90 градусам. Такой сдвиг можно получить, разложив магнитный поток обмотки напряжения на две части. Получается, что диск прибора вращается с частотой, пропорциональной активно потребляемой мощности. Поэтому непосредственный расход электроэнергии будет находиться в пропорции с количеством оборотов диска. Полученные данные о потреблении передаются на механическое счетное устройство, ось которого связана с осью подвижного диска с помощью зубчатой передачи. Такая конструкция обеспечивает синхронное вращение обоих элементов.

Принцип работы электронного счетчика электроэнергии

До недавних пор все измерения потребленной электроэнергии осуществлялись с помощью индукционных счетчиков. Постепенно, с развитием микроэлектроники, произошел существенный сдвиг в деле совершенствования приборов учета и контроля потребляемой электроэнергии. Были созданы современные цифровые электронные системы управления с применением новейших микроконтроллеров. Это позволило многократно повысить точность измерений, а отсутствие механики значительно повысило надежность счетчика.

Для электронных электросчетчиков разработана специальная элементная база и методы обработки поступающей информации. После обработки цифровых данных стал возможен одновременный подсчет не только активной, но и реактивной мощности. Данный фактор приобретает важное значение при организации учета в трехфазных сетях. В результате, были созданы многотарифные электросчетчики, учитывающие накопленную энергию в течение определенного времени суток. Данные приборы способны автоматически определять тот или иной тариф.

Как устроен и работает электронный счетчик электроэнергии

Основное назначение этого прибора сводится к постоянному измерению потребляемой мощности контролируемого участка электрической схемы и отображению ее величины в удобном для человека виде. Элементная база использует твердотельные электронные компоненты, работающие на полупроводниках или микропроцессорных конструкциях.

Такие приборы выпускают для работы с цепями тока:

1. постоянной величины;

2. синусоидальной гармонической формы.

Приборы учета электроэнергии постоянного тока работают только на промышленных предприятиях, эксплуатирующих мощное оборудование с большим потреблением постоянной мощности (электрифицированный железнодорожный транспорт, электромобили…). В бытовых целях они не используются, выпускаются ограниченными партиями. Поэтому в дальнейшем материале этой статьи их рассматривать не будем, хотя принцип их работы отличается от моделей, работающих на переменном токе, в основном конструкцией датчиков тока и напряжения.

Электронные счетчики мощности переменного тока изготавливаются для учета энергии электрических устройств:

1. с однофазной системой напряжения;

2. в трехфазных цепях.

Конструкция электронного счетчика

Вся элементная база располагается внутри корпуса, снабженного:

клеммной колодкой для подключения электрических проводов;

панелью ЖКИ дисплея;

органами управления работой и передачи информации от прибора;

печатной платой с твердотельными элементами;

Внешний вид и основные пользовательские настройки одной из многочисленных моделей подобных устройств, выпускаемых на предприятиях республики Беларусь, представлен на картинке.

Внешний вид электронного счетчика

Работоспособность такого электросчетчика подтверждается:

нанесенным клеймом поверителя, подтверждающим прохождение метрологической поверки прибора на испытательном стенде и оценке его характеристик в пределах заявленного производителем класса точности;

ненарушенной пломбой предприятия энергонадзора, ответственного за правильное подключение счетчика к электрической схеме.

Внутренний вид плат подобного прибора показан на картинке.

Платы электронного счетчика

Здесь нет никаких движущихся и индукционных механизмов. А наличие трех встроенных трансформаторов тока, используемых в качестве датчиков с таким же количеством явно просматриваемых каналов на монтажной плате, свидетельствуют о трехфазной работе этого устройства.

Читайте также:
Паяльник для полипропиленовых труб: видео-инструкция по монтажу своими руками, особенности выбора, насадок, какой лучше, ремонт, цена, фото

Электротехнические процессы, учитываемые электронным счетчиком

Работа внутренних алгоритмов трехфазных или однофазных конструкций происходит по одним и тем же законам, за исключением того, что в 3-х фазном, более сложном устройстве, идет геометрическое суммирование величин каждого из трех составляющих каналов.

Поэтому принципы работы электронного счетчика будем преимущественно рассматривать на примере однофазной модели. Для этого вспомним основные законы электротехники, связанные с мощностью.

Ее полная величина определяется составляющими:

реактивной (суммы индуктивной и емкостной нагрузок).

Активная и реактивная составляющие мощности, используемые в электронном счетчике

Ток, протекающий по общей цепи однофазной сети, одинаков на всех участках, а падение напряжения на каждом ее элементе зависит от вида сопротивления и его величины. На активном сопротивлении оно совпадает с вектором проходящего тока по направлению, а на реактивном отклоняется в сторону. Причем на индуктивности оно опережает ток по углу, а на емкости — отстает.

Электрические соотношения между током и напряжением, используемые в электронном счетчике

Электронные счетчики способны учитывать и отображать полную мощность и ее активную и реактивную величину. Для этого производятся замеры векторов тока с напряжением, подведенных на его вход. По значению отклонения угла между этими входящими величинами определяется и рассчитывается характер нагрузки, предоставляется информация обо всех ее составляющих.

В различных конструкциях электронных счетчиков набор функций неодинаков и может значительно отличаться своим назначением. Этим они кардинально выделяются от своих индукционных аналогов, которые работают на основе взаимодействия электромагнитных полей и сил индукции, вызывающих вращение тонкого алюминиевого диска. Конструктивно они способны замерять только активную или реактивную мощность в однофазной либо трехфазной цепи, а значение полной — приходится вычислять отдельно вручную.

Принцип измерения мощности электронным счетчиком

Схема работы простого прибора учета с выходными преобразователями показана на рисунке.

Структурная схема электронного счетчика с выходными преобразователями

В нем для замера мощности используются простые датчики:

тока на основе обычного шунта, через который пропускается фаза цепи;

напряжения, работающего по схеме широко известного делителя.

Сигнал, снимаемый таким датчиками, мал и его увеличивают с помощью электронных усилителей тока и напряжения, после которых происходит аналогово-цифровая обработка для дальнейшего преобразования сигналов и их перемножения с целью получения величины, пропорциональной значению потребляемой мощности.

Далее производится фильтрация оцифрованного сигнала и вывод на устройства:

Применяемые в этом схеме входные датчики электрических величин не обеспечивают измерения с высоким классом точности векторов тока и напряжения, а, соответственно, и расчет мощности. Эта функция лучше реализуется измерительными трансформаторами.

Схема работы однофазного электронного счетчика

В ней измерительный ТТ включен в разрыв фазного провода потребителя, а ТН подключен к фазе и нулю.

Структурная схема электронного однофазного счетчика

Сигналы с обоих трансформаторов не нуждаются в усилении и направляются по своим каналам на блок АЦП, осуществляющий преобразование их в цифровой код мощности и частоты. Дальнейшие преобразования выполняет микроконтроллер, осуществляющий управление:

ОЗУ — оперативным запоминающим устройством.

Через ОЗУ выходной сигнал может передаваться дальше в канал информации, например, с помощью оптического порта.

Функциональные возможности электронных счетчиков

Низкая погрешность измерения мощности, оцениваемая классом точности 0,5 S или 02 S разрешает эксплуатировать эти приборы в целях коммерческого учета использованной электроэнергии.

Конструкции, предназначенные для замеров в трехфазных схемах, могут работать в трех или четырехпроводных электрических цепях.

Электронный счетчик может непосредственно подключаться к действующему оборудованию или иметь конструкцию, позволяющую использовать промежуточные, например, высоковольтные измерительные трансформаторы. В последнем случае, как правило, осуществляется автоматический перерасчет измеряемых вторичных величин в первичные значения тока, напряжения и мощности, включая активную и реактивную составляющие.

Счетчик фиксирует направление полной мощности со всеми ее составляющими в прямом и обратном направлении, хранит эту информацию с привязкой ко времени. При этом пользователю можно снимать показания энергии по ее приращению за определенный период времени, например, текущие или выбранные из календаря сутки, месяц или год либо — накоплению на определенное назначенное время.

Фиксация значений активной и реактивной мощности за определенный период, например, 3 или 30 минут, как и быстрый вызов ее максимальных значений в течение месяца значительно облегчает анализ работы энергетического оборудования.

В любой момент можно просмотреть мгновенные показатели активного и реактивного потребления, действующего тока, напряжения, частоты в каждой фазе.

Наличие функции многотарифного учета энергии с использованием нескольких каналов передачи информации расширяет условия коммерческого применения. При этом создаются тарифы для определенного времени, например, каждого получаса выходного либо рабочего дня по сезонам или месяцам года.

Читайте также:
Почему нельзя держать крышку унитаза открытой: рациональные причины и приметы

Для удобства работы пользователя на дисплее выводится рабочее меню, между пунктами которого можно перемещаться, используя рядом расположенные органы управления.

Электронный счетчик электроэнергии позволяет не только считывать информацию непосредственно с дисплея, но и просматривать ее через удаленный компьютер, а также осуществлять ввод дополнительных данных или их программирование через оптический порт.

Защита информации

Установка пломб на счетчик производится в два этапа:

1. на первом уровне доступ внутрь корпуса прибора запрещается службой технического контроля завода после изготовления счетчика и прохождения им государственной поверки;

2. на втором уровне пломбирования блокируется доступ к клеммам и подключенным проводам представителем энергоснабжающей организации или энергонадзора.

Все события снятия и установки крышки оборудованы сигнализацией, срабатывание которой фиксируется в памяти журнала событий с привязкой ко времени и дате.

Система паролей предусматривает ограничение пользователей к доступу информации и может содержать до пяти ограничений.

Нулевой уровень полностью снимает ограничения и позволяет просматривать все данные местно или удаленно, синхронизировать время, корректировать показания.

Первый уровень пароля дополнительного доступа предоставляется работникам монтажной или эксплуатационной организации систем АСКУЭ для наладки оборудования и записи параметров, не оказывающих влияние на коммерческие характеристики.

Второй уровень пароля основного доступа назначается ответственным работником энергонадзора на счетчике, прошедшем наладку и полностью подготовленном к работе.

Третий уровень основного доступа дается работникам энергонадзора, осуществляющим снятие и установку крышки со счетчика для доступа к его клеммным зажимам или проведению удаленных операций через оптический порт.

Четвертый уровень предоставляет возможности установки аппаратных ключей на плату, удаление всех установленных пломб и возможность работы через оптический порт для усовершенствования конфигурации, замены калибровочных коэффициентов.

Приведенный перечень возможностей, которыми обладает электронный счетчик электроэнергии, является общим, обзорным. Он может выставляться индивидуально и отличаться даже на каждой модели одного производителя.

Принцип работы электросчетчика

У каждого из нас в квартире, доме, гараже присутствует прибор учета электроэнергии, проще говоря электросчетчик. Он подсчитывает количество потребленной активной электроэнергии за определенное количество времени.

Электронные электросчетчики

В них все реализуется с помощью микропроцессорной техники, схема ниже:

ТТ – трансформатор тока

С помощью датчиков тока ДТ и датчиков напряжения ДН снимаются значения тока и напряжения сети.

После датчиков сигналы поступают на аналогово-цифровой преобразователь, где сигнал с аналогового превращается в цифровой и поступает на микроконтроллер.

Микроконтроллер в свою очередь производит вычисления и отправляет данные на дисплей или через интерфейс на другое устройство.

С помощью таких электросчетчиков можно централизовано вести учет электроэнергии различных линий.

Главным достоинством электронных электросчетчиков над индукционными является:

  • отсутствие вращающихся частей, что снижает вероятность поломки;
  • возможность вести учет электроэнергии по различным тарифам с автоматическим переключением по времени суток (многотарифные счетчики);
  • меньшая погрешность измерения, особенно при малых нагрузках;
  • возможность передачи данных на расстояние через интерфейсы, что не требует постоянного присутствия для снятия данных;
  • удобность применения;
  • большая стоимость;
  • большая вероятность выхода из строя при больших скачках напряжения и тока сети;
  • более дорогостоящий и трудный ремонт;
  • выше чувствительность к климатическим условиям (например перепад температур);
  • труднее диагностировать неисправности;

Принцип работы электронного электросчетчика

Схема подключения однофазного электросчетчика

Данная схема предназначена для подключения любого однофазного счетчика электрической энергии.

Однофазные счетчики чаще всего подключают по схеме прямого включения в сеть и только в очень редких случаях через трансформаторы тока.

В клеммной колодке однофазного счетчика электроэнергии расположены 4 контакта:

  • 1 клемма — ввод фазы
  • 2 клемма — выход фазы на нагрузку (в квартиру)
  • 3 клемма — ввод нуля
  • 4 клемма — выход нуля на нагрузку (в квартиру)
  • винт напряжения — для отключения катушки напряжения в индукционных счетчиках при проведении государственной поверки.

Красным цветом обозначены токовая катушка (обмотка) и фазный провод, синим цветом — катушка (обмотка) напряжения и нулевой провод.

В данной схеме перед счетчиком электроэнергии установлен вводной автоматический выключатель.

Эту схему можно использовать для электроснабжения своей квартиры, дачи или коттеджа.

Схема подключения трехфазного электросчетчика

Принцип работы счетчика

Сигналы с датчиков тока и напряжения поступают на входы АЦП микропроцессора и преобразуются в коды. Микропроцессор, перемножая цифровые коды, получает величину, пропорциональную мощности. Интегрирование мощности во времени дает информацию о величине энергии.

Читайте также:
Наклейки в детскую комнату от Delilah Divine

Микропроцессор управляет всеми узлами счетчика и реализует измерительные алгоритмы в соответствии со специализированной программой; периодически определяет тарифную зону, формирует импульсы телеметрии, ведет учет электроэнергии, времени и календаря; обрабатывает поступившие команды по интерфейсу и, при необходимости, формирует ответ.

Кроме данных об учтенной электроэнергии в памяти счетчика хранятся калибровочные коэффициенты, тарифное расписание, серийный номер, версия программного обеспечения счетчика. Калибровочные коэффициенты заносятся в память на предприятии-изготовителе. При отсутствии напряжения питания процессор переходит на питание от литиевой батареи с напряжением 3 В и емкостью 120 мА·ч. Процессор синхронизирован кварцевым резонатором, работающем на частоте 32,768 кГц. Блок питания вырабатывает два гальванически изолированных напряжения для питания микропроцессора и цепей интерфейса.

Упростить алгоритм обработки информации и снизить затраты на комплектацию позволяет структурная схема:

Структурная схема счетчика ватт-часов активной энергии переменного тока Меркурий-200»

В этой структуре микроконтроллер (МК) выполняет функцию счетчика импульсов, пропорциональную активной мощности, вывод информации на дисплей и ряд специальных функций (изменение тарифов, сохранение информации в аварийных режимах, вывод служебной информации на внешние устройства и пр.). По мере накопления импульсов, соответствующих ватт-часам, значение накопленной энергии выводится на дисплей и записывается во FLASH-память. Если произойдет сбой, временное исчезновение напряжения сети, информация о накопленной энергии сохраняется во FLASH-памяти. После восстановления питающего напряжения эта информация считывается микроконтроллером, выводится на индикатор и счет продолжается с этой величины.

В случае реализации многотарифного СЭ, устройство должно обеспечивать обмен информацией с внешними устройствами по последовательному интерфейсу. Он может использоваться для задания тарифов, инициализации и коррекции таймера реального времени, получения информации о накопленных значениях энергии и т. д. Кроме того, интерфейс может обеспечивать подключение группы распределенных в пространстве СЭ в сеть с возможностью доступа к каждому из них.

Структурная схема многотарифного счетчика

Алгоритм работы структуры следующий. Память энергонезависимого ОЗУ разбита на 13 банков, в каждом из которых хранится информация о накопленной энергии по четырем тарифам: общем, льготном, пиковом и штрафном.

В первом банке накопления производятся с момента начала эксплуатации счетчика, следующие 12 банков соответствуют накоплениям за 11 предыдущих и за текущий месяц. Накопления за текущий месяц записываются в соответствующий банк, и таким образом имеется возможность определить, сколько было накоплено энергии за любой из 11 предшествующих месяцев.

Перед началом эксплуатации счетчика на заводе-изготовителе обнуляют содержимое банков памяти, т.е. накопление начинается с нулевых значений.

Переключение тарифов осуществляется по временным критериям: для каждого дня недели определяется свое тарифное расписание, т.е. времена начала основного и льготного тарифов и от нуля до трех интервалов времени для пикового тарифа. До 16 произвольных дней в году могут быть определены как праздничные, в эти дни работает тарифное расписание для воскресенья.

В счетчике может быть установлен режим ограничения по мощности и по количеству израсходованной энергии за месяц. В этом режиме счетчик фиксирует количество энергии, израсходованной сверх лимита. При превышении установленного лимита энергии производится либо переход на накопление по штрафному тарифу, либо отключение пользователя от энергосети. Штрафной тариф также может быть установлен принудительно (по интерфейсу связи) в случае, например, задолженности по оплате.

Каждый раз при включении счетчика в сеть (после очередного пропадания напряжения) фиксируется время и дата этого момента для возможности последующего контроля. Также предусмотрена запись времени и даты несанкционированного снятия крышки устройства.

Через специальный разъем к счетчику можно подключить картридер для считывания информации с индивидуальной электронной карточки о количестве энергии, оплаченной потребителем.

Просмотр информации по предыдущим 11 месяцам производится при нажатии специально предусмотренной кнопки на корпусе счетчика. При каждом нажатии последовательно выводится информация о каждом тарифе соответствующего месяца, после чего происходит переход на предыдущий месяц, и процесс повторяется. Номер просматриваемого месяца и год отображаются на индикаторе даты. Если нажатия кнопки не происходит несколько секунд, счетчик возвращается в нормальный режим работы. При подключении картридера эта кнопка позволяет просмотреть количество энергии по каждому тарифу, имеющемуся в распоряжении у пользователя.

Как выбрать и подключить электрический счетчик

Электрический счетчик – это измерительный прибор, предназначенный для учета количества израсходованной потребителем электроэнергии. Измеряется потребляемая электрическая мощность в кВт×час или А×час.

Электрический счетчик Меркурий 200

По принципу действия и устройству электрические счетчики бывают: электромеханические, гибридные и электронные (статические), показан на фотографии.

Читайте также:
Рубероид под металлопрофилем

Как самостоятельно выбрать счетчик для дома

Несмотря на кажущуюся сложность выбора для замены или установки нового электрического счетчика, домашнему электрику будет сделать это просто, если ознакомиться с основными критериями выбора.

Типы счетчиков по принципу работы

До недавних пор для учета расхода электроэнергии устанавливались только индукционные механические (электромеханические) счетчики. В них, потребляемый ток протекает через измерительную катушку медного провода, возбуждая магнитное поле. Это поле, воздействуя на диск, заставляет его вращаться со скоростью пропорциональной величине потребляемого тока. Через систему шестеренок вращательное движение передается на счетное устройство.

Электрические счетчики

На смену электромеханическим счетчикам пришли гибридные, которые встречаются в двух конструктивных исполнениях: Индукционный электронный и Электронный механический.

В индукционном электронном счетчике, как и в механическом, имеется катушка, вращающая диск. Вращаясь, он воздействует на сенсор, который вырабатывает импульсы, поступающие на электронное устройство с цифровым дисплеем.

В электронном механическом счетчике все наоборот. Датчиком тока служит твердотельный элемент, как в статическом счетчике, а счетное устройство установлено механическое, как в индукционном счетчике.

В настоящее время вышеупомянутые счетчики вытесняются современными статическими счетчиками, не имеющие механических деталей. В качестве датчиков расхода электроэнергии в них применяется твердотельный электронный элемент, с которого сигнал подается на электронный блок с цифровым дисплеем.

Выбор счетчика по принципу работы

В таблице приведены основные технические характеристики счетчиков учета электрической энергии. Для установки в квартире или доме подойдет любой из них. Поэтому при выборе нужно исходить из объема и времени суток потребления электроэнергии.

Таблица основных технических характеристик существующих типов счетчиков
ХарактеристикаИндукционный механическийГибридныеЭлектронный статическийПримечание
Индукционный электронныйЭлектронный механический
Ценанизкаясредняясредняявысокая
Надежностьвысокаясредняясредняянизкая
Стоимость ремонтанизкаясредняясредняявысокая
Периодичность поверки, лет6-86-84-164-16Указывается в паспорте
Рабочее напряжение, В220, 380220, 380220, 380220, 380Указывается в паспорте
Максимальный ток нагрузки, А60, 10060, 10060, 10060, 100Указывается в паспорте
Количество фаз1, 31, 31, 31, 3Указывается в паспорте
Стартовый токвысокийвысокийнизкийнизкийУказывается в паспорте
Класс точности (% погрешности)2 и более2 и более1 и менее1 и менееЭксплуатация класса более 2 запрещена
Режим день/ночьнетестьнетестьПозволяет снизить затраты в ночное время
Дистанционная передача показанийнетестьнетестьПозволяет передавать данные энергоснабжающей компании
Измерение параметров электрической сетинетестьнетестьПозволяет контролировать напряжение и ток потребления
Габаритные размерыгабаритныйгабаритныйгабаритныймалогабаритныйУказаны в паспорте

Если в ночное время электроэнергия потребляется в незначительных объемах, то лучшим выбором будет Индукционный механический или Индукционный электронный счетчик, так как недорогой, надежный, долговечный и практически не потребуется нести затраты на его ремонт.

Стоит отметить, что индукционные счетчики, в отличии от электронных имеют меньшую чувствительность, и если ток потребления мал, например, включен только на зарядку сотовый телефон, то счетчик считать не будет.

Хотя Статические счетчики в два раза дороже и менее надежны, но если в ночное время суток потребляется более 30% электроэнергии, то они быстро себя окупают и дают хорошую экономию, так как в них заложена функция тарификации. Это когда есть возможность вести учет потребляемой электроэнергии в ночное и дневное время отдельно. Стоимость ночной электроэнергии существенно ниже.

Поставляющие электроэнергию компании тоже заинтересованы в установке статических электронных счетчиков по причине избыточных мощностей в ночное время и исключения снижения показаний индукционных счетчиков с помощью магнитов и укладкой в горизонтальное положение.

На основании вышеизложенного можно сделать вывод, что для частного жилья подойдет однофазный двухпроводный электрический счетчик любого принципа работы, рассчитанный на напряжение 220 В и ток 60 А (максимальная мощность определяется умножением величины тока на напряжение и составит 13,2 кВт).

Мощность потребления электроприборами

Теоретическую максимальную мощность, которая будет потребляться в случае включения одновременно всех электроприборов в квартире не сложно подсчитать по данным приведенной в таблице. Для этого нужно сложить мощности всех имеющихся электроприборов. Но такой случай маловероятен.

Таблица потребляемой мощности и силы тока бытовыми электроприборами
Бытовой электроприборПотребляемая мощность, кВт (кBA)Потребляемая сила тока, АРежим потребления
Лампочка накаливания0,06 – 0,250,3 – 1,2Постоянно
Электрочайник1,0 – 2,05 – 9До 5 минут
Электроплита1,0 – 6,05 – 60Зависит от режима работы
Микроволновая печь1,5 – 2,27 – 10Периодически
Электромясорубка1,5 – 2,27 – 10Зависит от режима работы
Тостер0,5 – 1,52 – 7Постоянно
Гриль1,2 – 2,07 – 9Постоянно
Кофемолка0,5 – 1,52 – 8Зависит от режима работы
Кофеварка0,5 – 1,52 – 8Постоянно
Электродуховка1,0 – 2,05 – 9Зависит от режима работы
Посудомоечная машина1,0 – 2,05 – 9Максимальный с момента включения до нагрева воды
Стиральная машина1,2 – 2,06 – 9Максимальный с момента включения до нагрева воды
Сушильная машина2,0 – 3,09 – 13Постоянно
Утюг1,2 – 2,06 – 9Периодически
Пылесос0,8 – 2,04 – 9Зависит от режима работы
Обогреватель0,5 – 3,02 – 13Зависит от режима работы
Фен для волос0,5 – 1,52 – 8Зависит от режима работы
Кондиционер1,0 – 3,05 – 13Зависит от режима работы
Стационарный компьютер0,3 – 0,81 – 3Зависит от режима работы
Электроинструмент (дрель, лобзик и т.п.)0,5 – 2,52 – 13Зависит от режима работы
Читайте также:
Ржавчина на потолке

Для более точного расчета теоретической суммарной мощности потребления электроприборами ее нужно взять из этикеток или инструкций по эксплуатации на них. Мощность указывается в ваттах (Вт или VA) или киловаттах (кВт или кVA). 1 кВт=1000 Вт.

Электрическая схема подключения
электрического однофазного счетчика

На чертеже изображена электрическая схема щитка и квартирой электропроводки. Электрический счетчик обычно устанавливается в электрическом щитке вместе с автоматическими выключателями и УЗО.

Схема подключения счетчика к электропроводке в щитке

На однофазный счетчик электрическая энергия подается из электросети через щиток, установленный в подъезде дома. В щитке на каждую квартиру устанавливается отдельный автоматический выключатель и с него провода идут непосредственно на счетчик. Один провод называется фазой, второй – нулем, а третий – заземлением.

В квартирах и домах старой постройки электропроводка прокладывалась без заземляющего провода. Он непосредственно в работе электропроводки участие не принимает и предназначен исключительно для повышения безопасности при эксплуатации электроприборов.

Схема подключения счетчика к электропроводке

Согласно ГОСТ Р 52320-2005 на корпусе счетчика рядом с клеммами для подключения проводов обязательно должна быть нанесена схема его подключения. На фотографии это табличка желтого цвета.

Согласно правил фазный провод L, идущий от электросети, подключается к первому (левому на фотографии) зажиму клеммы. А со второго подается в бытовую электропроводку. Третий и четвертый контакты клеммы соединены внутри счетчика между собой и предназначены для подключения нулевого провода N.

Трехфазный счетчик подключается по такому же принципу. На первый контакт подается фаза А, а со второго – снимается. На третий подается фаза В, а с четвертого выходит. На пятый подается фаза С, а с шестого снимается. Нулевой провод N подается и снимается соответственно с седьмого и восьмого контакта.

Внимание! Перед работой по замене или установке счетчика необходимо отключить подачу на него напряжения отключением автоматического выключателя в распределительном щитке на лестничной площадке и проверить отсутствие фазы на подводящих проводах с помощью индикатора фазы.

Устройство электросчетчика

У знакомого в счетчике перестал работать дисплей. Вызвал электрика и тот недолго думая, заменил счетчик новым. В результате мне для изучения устройства попал этот электроприбор.

Электросчетчик Меркурий со снятой крышкой

Лицевая панель счетчика фиксировалась на трех защелках. После ее снятия открылась картина, как на фотографии. Вся электрическая схема счетчика собрана на печатной плате с двухсторонним монтажом. С лицевой стороны припаян дисплей, кнопки управления и батарейка типа CR2032 на напряжение 3 В, такие же устанавливаются в компьютерах. Батарейка необходима для сохранения настроек и показаний счетчика в случае пропадания электроэнергии.

Батарейка является узким местом в счетчике, так как срок ее годности составляет около 10 лет. Если она выйдет из строя, то настройки день-ночь и показания счетчика при пропадании электроэнергии обнулятся. Батарейка приварена к клеммам, которые впаяны в плату. Для замены батарейки придется заняться пайкой паяльником.

Электросчетчик Меркурий, обратная сторона печатной платы

Печатная плата зафиксирована на четырех защелках и легко снимается. Все остальные элементы схемы распаяны на обратной стороне печатной платы. Пайки выполнены аккуратно, следов флюса нет. Качество изготовления счетчика Меркурий мне понравилось.

Читайте также:
Профессиональная монтажная пена: особенности выбора

Электросчетчик Меркурий, внешний вид датчика расхода электроэнергии

Измерительным датчиком потребляемой электроэнергии служит шунт, представляющий собой металлическую пластину с калиброванным сопротивлением очень малой величины. При протекании через шунт тока на нем, согласно Закона Ома, происходит падение напряжения, которое подается на микропроцессор.

Аналоговый сигнал микропроцессором преобразуется в цифровой, который запоминаются, и текущие показания потребленной электроэнергии выводятся на дисплей. На фотографии шунт имеет цвет меди.

Электросчетчик Меркурий, внешний вид микропроцессора

Решил попробовать отремонтировать счетчик. Измерял величину напряжения на выводах электролитического конденсатора блока питания, оно составило 3,5 В. С учетом установленного конденсатора на 25 В, напряжение явно было ниже нормы.

Блок питания имеет бестрансформаторную схему на токоограничительном конденсаторе. Проверка конденсаторов и диодов показала их исправность. Пришлось на выводы последнего электролитического конденсатора подать со стационарного БП напряжение 5 В с ограничением по току 300 мА.

Прощупывание пальцами элементов схемы выявило, что левый нижний угол микропроцессора сильно нагревается. Стало понятно, что он неисправен, и устранить такую неисправность в домашних условиях не представляется возможным.

Крепление счетчика в щитке на DIN-рейке

В электрическом щитке все современные установочные электрические изделия, такие как счетчик, автоматы, УЗО и другие, крепятся легко съемным способом на DIN-рейке, которую электрики еще называют монтажной рейкой.

Внешний вид DIN рейки

DIN-рейка имеет ширину 35 мм и согласно ГОСТ Р МЭК 60715-2003 «Аппаратура распределения и управления низковольтная. Установка и крепление на рейках электрических аппаратов в низковольтных комплектных устройствах распределения и управления» обозначается Т35. Ранее DIN-рейки изготавливались из алюминиевого сплава, как на фотографии. Современные – из листовой стали методом штамповки.

Способ крепления счетчика на защелках

Некоторые модели счетчиков комплектуются своими DIN-рейками. Например, электросчётчик «Меркурий 200», который установлен в моей квартире, в комплекте имел нестандартную DIN-рейку, хотя посадочное место для крепления имело стандартный размер, 35 мм, что позволяет крепить его и на стандартной DIN-рейке.

Способ крепления на DIN-рейке

Установленный в щитке счетчик опломбирован и снять его можно, только после снятия пломбы и крышки. Под ней находятся два прямоугольных отверстия (на фотографии указаны стрелками). Для снятия счетчика нужно в эти отверстия одновременно вставить лезвия двух плоских отверток, подвижные защелки выйдут из зацепления DIN-рейки, и отвести нижний край счетчика от стенки щитка.

Как надежно подключить провода к счетчику

Надежность работы всей квартирной электропроводки зависит от качества подключения проводов к счетчику. Тут по неопытности домашние электрики могут допустить ошибку.

Если не оставлена достаточная длина оголенного конца провода при снятии изоляции, то она попадет под зажимную планку клеммы и со временем приведет к нарушению контакта, что приведет к нестабильной подачи электроэнергии в квартирную электропроводку.

Подготовка провода к подключению к счетчику

Надежность подключения проводов к клеммам счетчика можно повысить, если концы проводов согнуть, как показано на фотографии. При таком подключении площадь соприкосновения провода с клеммой увеличится вдвое.

Винтовые клеммы счетчика и согнутый провод для подключения

На фотографии показан вид на клеммы со стороны ввода проводов. Для подключения проводов к счетчику нужно отвинтить винт клеммы, вставить провод до упора и закрутить винт с достаточным усилием.

При заводе провода в отверстие клеммы можно не попасть в него, поэтому после затягивания винта нужно с достаточным усилием потянуть за провод, чтобы убедиться в надежности его закрепления.

Порядок пломбировки счетчика

Согласно требованиям ПУЭ, счетчик, для исключения хищения электроэнергии, должен быть опломбирован. Поэтому, перед заменой старого или отказавшего счетчика, необходимо пригласить представителя поставщика электроэнергии для составления Акта о снятии пломб. В случае аварийной ситуации, например, прекратилась подача электроэнергии в квартиру или дом по вине отказа счетчика, следует обратиться в аварийную службу. Их электрики имеют право срывать пломбы с оформлением акта.

Пломба на счетчике Меркурий 200

Сразу после самостоятельной установки счетчика в щиток по причине ремонта, поверки или замены, повторно приглашается уполномоченное лицо поставщика электроэнергии для пломбировки счетчика. Нужно будет предъявить Акт о снятии пломбы из аварийной службы и Паспорт на электросчетчик. На фотографии видна пломба желтого цвета.

При установке электросчетчика следует соблюдать следующие правила. Подающие электроэнергию из подъезда в квартиру провода не должны иметь соединений. Электросчетчик должен быть установлен на высоте от 0,4 до 1,7 м и подлежит пломбировке вне зависимости от того в квартире он стоит или подъезде дома.

Автоматический выключатель, включенный в электропроводку перед электросчетчиком, пломбируется только в случае, если он установлен в квартире. Конструкция автоматического выключателя, установленного перед счетчиком в квартире должна предусматривать возможность его пломбировки.

Ссылка на основную публикацию