Принцип работы и сферы применения полупроводниковых диодов

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Полупроводники – вещества, которые по своему удельному сопротивлению занимают промежуточное положение между проводниками и диэлектриками. Сопротивление полупроводников сильно зависит от температуры и концентрации примесей. В производстве полупроводниковых приборов наибольшее распространение получили такие материалы, как германий и кремний.

Носителями зарядов в полупроводниках являются свободные электроны (-) и дырки(+). Дырка – место на внешней орбите атома, где ранее находился электрон.

Виды полупроводников

Полупроводники, которые состоят только из атомов германия или кремния, называют чистыми, или собственными.

Полупроводники, в которых свободных электронов значительно больше, чем дырок, называют полупроводниками nтипа. Примеси в таких полупроводниках называют донорами. Основными носителями заряда являются электроны, а неосновными — дырки.

Полупроводники, в которых свободных дырок значительно больше, чем электронов, называют полупроводниками pтипа. Примеси называют акцепторами. Дырки — основные носители, а электроны — неосновные.

Принцип действия большинства полупроводниковых приборов основан на явлениях, происходящих на границе двух полупроводников с различными типами электропроводности –р-n переходе.

Устройство полупроводникового диода

Полупроводниковым диодом называют полупроводниковый прибор с одним электронно-дырочным (р-n) переходом (основная часть) и двумя выводами. Вывод из р-области называется – анодом, из n-области – катодом.

В зависимости от формы и размера p-n-перехода различают плоскостные (рис. 1) и точечные диоды (рис. 3). У точечных диодов форма p – n перехода в виде точки, у плоскостных – в виде плоскости, имеющей значительную площадь. Плоскостные диоды могут пропускать значительные токи, но работают на невысоких частотах. Точечные диоды наоборот могут работать на высоких частотах, но пропускают маленькие токи.

К металлическому основанию плоскостного диода, называемому кристаллодержателем, припаивается пластинка полупроводника n-типа. Сверху в нее вплавляется капля металла, обычно индия. Атомы индия диффундируют (проникают) в полупроводниковую пластинку и образуют у ее поверхности слой р-типа. К кристаллодержателю и индию привариваются проводники, которые служат выводами диода.

Рис. 1 – Устройство плоскостного диода (справа – плоскостной выпрямительный диод Д242Б)
1 – изолятор, 2 – корпус, 3 -вывод анода, 4 – припой, 5 – кристалл,
6 – кристаллодержатель, 7 – внешние выводы

Точечный полупроводниковый диод состоит из пластинки полупроводника n-типа и заостренной пружинки из вольфрама или фосфористой бронзы диаметром 0,1 мм. Через прижатую к полупроводниковой пластинке пружинку пропускают электрический ток большой силы. Металлическая пружинка сваривается с полупроводниковой пластинкой, образуя под острием р-область.

точечный диод2

Рис. 2 – Устройство точечного диода (справа – точечный диод КД522Б)
1 — выводы, 2 – стеклянный баллон, 3 – пластинка полупроводникаи, 4 – металлическая проволочка-пружина

Чем больше площадь р-n-перехода, тем больший ток может через него протекать и тем больше его емкость. Плоскостные полупроводниковые диоды применяются в электрических цепях, в которых протекают большие токи и когда емкостные свойства не оказывают заметного влияния на работу диода. Точечные диоды применяются в цепях с малыми токами и в высокочастотных устройствах.

Для защиты от механических повреждений, попадания на полупроводник света, пыли и влаги его помещают в герметический корпус.

Условные графические обозначения
полупроводниковых диодов

Условные графические обозначения полупроводниковых диодов

Диод полупроводниковый выпрямительный, общее обозначение
Стабилитрон и стабистор
Стабилитрон с двусторонней проводимостью
Варикап
Диод Шоттки
Светодиод
Фотодиод

Способы включения диода

Если к диоду подключить внешний источник напряжения плюсом к аноду (р-области), а минусом к катоду (n-области), такое подключение называется прямым включением (рис. 3), а протекающий через него ток — прямым током.

Рис. 3 – Прямое включение диода

Если источник внешнего напряжения переключить плюсом к катоду и минусом к аноду, такое включение диода называют обратным включением(рис. 4), а протекающий через него ток — обратным током. При большом значении обратного напряжения происходит пробой р-n-перехода.

Рис. 4 – Обратное включение диода

Пробой может быть тепловым или электрическим. При тепловом пробое разрушается кристалл и свойства р-n-перехода теряются. Электрический пробой, не перешедший в тепловой, является обратимым, т. е. свойства р-n-перехода восстанавливаются при снятии обратного напряжения.

Вольтамперная характеристика диода

График, приведенный на рис. 7, называется вольтамперной характеристикой (ВАХ) диода. Из ВАХ диода видно, что сила протекающего через него тока зависит от полярности приложенного напряжения. При прямом напряжении ток большой (мА, А), а при обратном напряжении — в сотни и даже тысячи раз меньше (мкА, мА).

Рис. 5 – Типовые вольт-амперные характеристики германиевого и кремниевого полупроводниковых
диодов, масштаб по оси тока и напряжения меняется при переходе через начало координат

Левая часть характеристики называется обратной ветвью характеристики, правая часть – прямой ветвью.

Основные параметры диодов

К этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

В большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы 1 будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Основные характеристики выпрямительных диодов

ОбозначениеОписание
Iпр.maxМаксимально допустимый постоянный прямой ток
IобрПостоянный обратный ток
UпрПостоянное прямое напряжение
Uобр.maxМаксимально допустимое обратное напряжение
PmaxМаксимально допустимая мощность, рассеиваемая на диоде
PсрСредняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях;
Iпр.ср.maxМаксимально допустимый средний прямой ток
Iвп.ср.maxМаксимально допустимый средний выпрямленный ток
UобрПостоянное напряжение , приложенное к диоду в обратном направлении
Iпр.срПрямой ток, усредненный за период
Iобр.срОбратный ток, усредненный за период
RдифДифференциальное сопротивление – отношение приращения напряжения на диоде к вызвавшему его малому приращению тока
Uпр.срСреднее прямое напряжение диода при заданном среднем значении прямого тока
Читайте также:
Опаяльная станция 900D: собенности конструкции и использования

Классификация диодов

  • Выпрямительные – для преобразования переменного тока в постоянный.
  • Импульсные – имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.
  • Стабилитрон – для стабилизации постоянного напряжения (примерно от 3,5 В и выше) на нагрузке. В стабилитронах используется участок обратной ветви ВАХ в области электрического пробоя.
  • Стабистор – для стабилизации напряжения порядка 1 В. Используется прямая ветвь ВАХ. Включают в прямом направлении.
  • Варикап – используется зависимость емкости от значения приложенного обратного напряжения. Применяется в качестве элементов с электрически управляемой емкостью.
  • Сверхвысокочастотный (СВЧ) – полупроводниковый диод, предназначенный для преобразования и обработки сверхвысокочастотного сигнала (до десятков и сотен гигагерц).
  • Детекторные – предназначены для детектирования сигнала.
  • Смесительные – предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.
  • Переключательные – для применения в устройствах управления уровнем сверхвысокочастотной мощности.

Принцип работы полупроводникового диода

В основу работы диода положено свойство p-n-перехода хорошо пропускать ток в одном направлении и плохо в другом. Диод состоит из одного p-n-перехода и проводит ток в одном направлении только тогда, когда величина напряжения, приложенного к диоду, больше величины потенциального барьера. Для германиевого диода минимальное внешнее напряжение равно 0,3 В, а для кремниевого – 0,7 В.

Если монокристалл полупроводникового материала с одного конца легировать примесями типа р, а с другого – примесями типа n, то между областями с различным типом проводимости образуется р-n-переход. Некоторые дырки из области р диффундируют в область n. В результате область р получает небольшой отрицательный заряд. Аналогичным образом электроны из области n диффундируют в область р, и область n оказывается заряженной положительно. В тонком слое между областями n и р элек­троны и дырки рекомбинируют, и так как этот слой в результате имеет очень мало свободных носителей заряда, его называют обедненным слоем. Этот слой действует как потенциальный барьер, препятствующий дальнейшей диффузии носителей зарядов, и переход находится в состоянии динамического равновесия (рис. 6, а).

Если внешнее напряжение приложено к выводам диода таким образом, что анод (А) имеет положительный потенциал по отношению к катоду (К), то будет наблюдаться уменьшение толщины обедненного слоя. Потенциальный барьер при этом снижается, что способствует протеканию тока через переход. С увеличением внешнего напряжения ток через переход возрастает по экспоненциальному закону до тех пор, пока внешнее напряжение не станет равным величине потенциального барьера, т. е. результирующее напряжение на переходе станет равным нулю. Дальнейшее возрастание тока через переход ограничивается только сопротивлением полупроводникового материала. Если полярность внешнего напря­жения изменить на обратную, то величина потенциального барьера возрастет, и основные носители не смогут преодолеть потенциальный барьер. В этих условиях, однако, через переход будет протекать незначительный ток, называемый обратным током. При возрастании внешнего обратного напряжения этот ток остается постоянным, пока напряжение не достигнет точки пробоя. В этой точке при постоянном напряжении ток быстро возрастает (рис. 6, б).

Рис. 6 – Полупроводниковый переход с потенциальным барьером:
а – образованным диффузией носителей зарядов;
б – вольт-амперная характеристика полупроводникового диода,
Масштаб по оси тока меняется при переходе через начало координат

Таким образом, при смещении перехода в прямом направлении через него будет протекать достаточно большой ток, а при обратном смещении, меньшем пробивного, ток, протекающий через переход, крайне мал. Иными словами, такое устройство действует, как выпрямитель.

Выпрямительные диоды

Основное предназначение выпрямительных диодов – преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д.

В качестве основы р-n перехода используются кристаллы кремния или германия. Кремниевые диоды применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Мощность выпрямительных диодов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

    Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты.

Принцип работы и сферы применения полупроводниковых диодов

Применение полупроводниковых диодов

Полупроводниковый диод является специальным устройством с одним р-n переходом, а также анодным и катодным выводом, которое предназначается для всевозможного изменения электрического сигнала. В большинстве случаев элемент изготовляется из кремния, хотя иногда используются и другие полупроводниковые материалы. Среди основных компонентов прибора — кристаллическая часть с р-n переходом.

Общая информация

Следует отметить, что современные полупроводниковые диоды создаются на основе германия или селена, как и более ста лет назад. Эти материалы обладают специфической структурой, которая позволяет применять элементы для модернизации схем и электроприборов, а также проводить преобразование разных токов.

Читайте также:
Светодиодные точечные светильники для гипсокартонных потолков

В мире существуют разные типы таких изобретений, которые отличаются материалом изготовления, принципом действия и сферами применения. Особым спросом пользуются плоскостные и поликристаллические выпрямители, представляющие собой аналоги мостов. Они взаимодействуют посредством двух контактов.

Что касается плюсов приборов, то к ним следует отнести:

Виды полупроводниковых диодов

  1. Полную взаимозаменяемость. Вышедший из строя элемент можно заменить любым другим с такими же свойствами и принципом работы. Особых требований к выбору точно такой же модели нет.
  2. Высокую пропускную способность.
  3. Дешевизну и доступность. Продаются полупроводниковые диоды в каждом магазине с электротехническими товарами. Стоимость такой продукции составляет от 50 рублей. К тому же их можно изъять своими руками из схем старых устройств.

Принцип работы

Сфера применения полупроводниковых диодов

Понять принцип действия полупроводникового диода несложно. Все, что для этого понадобится — разбираться в базовых законах физики и знать, как происходят некоторые электрические процессы.

Изначально электроток действует на катод, что вызывает накаливание подогревательного элемента. В свою очередь, электродом испускаются электроны, а между двумя частями появляется электрическое поле.

Аноды с положительным зарядом воздействуют на электроны и притягивают их, а образованное поле выступает в качестве катализатора такой реакции. Также в этот момент формируется эмиссионный ток.

В двух электродах начинается формирование пространственно-отрицательного заряда, который может препятствовать протеканию электронов. Однако случается это лишь при снижении потенциала анода, в результате чего масса электронов не способна справиться с отрицательными элементами, что заставляет их перемещаться в обратном порядке, то есть электроны снова возвращаются к катоду.

Разновидности полупроводниковых диодов

Нередко показатели катодного тока держатся нулевой отметки — происходит это при воздействии частиц с зарядом минус. В результате образованное поле не заставляет электроны двигаться быстрее, а вызывает обратную реакцию — притормаживает их и заставляет вернуться обратно к катоду. В конечном итоге цепь размыкается, так как диод остается в запертом состоянии.

Устройство и конструкция

Разобравшись с принципом работы полупроводникового диода, можно начать изучать его устройство и конструкцию. Эти сведения понадобятся для дальнейшего использования диода и более глубокого понимания его рабочих свойств. В основе элемента лежат такие составляющие:

Частые поломки полупроводниковых диодов

  1. Внешняя оболочка. В качестве корпуса используется небольшой баллон. Он полностью вакуумный и может быть стеклянным, металлическим или изготовленным из керамики.
  2. Внутри конструкции находится два электрода. Первый используется в качестве катода с накалом, обеспечивающим стабильную эмиссию электронов. В самом простом исполнении он являет собой нить с минимальной толщиной, способную накаливаться по мере подачи тока. Но в настоящее время активно распространяются модели косвенного накала. В отличие от классических типов они представлены в виде небольших цилиндров со специфическим слоем, где происходит испускание электронов.
  3. Что касается второго электрода, то он является анодом, принимающим электроны от катода. Элемент обладает плюсовым зарядом и цилиндрической формой. При изготовлении кристалла диода применяется кремний или германий.

Сферы применения и назначение

Сферы применения полупроводниковых диодов очень обширны. Сегодня без них тяжело представить работу большинства электрических приборов, и это неудивительно. Элементы задействуются для изготовления диодных мостов, а также следующих приспособлений:

  1. Устройств для защиты приборов от неверной полярности или перегрузок.
  2. Переключателей.
  3. Систем диодной искрозащиты.

Монтаж полупроводниковых диодов

Что касается диодных мостов, то они представляют собой устройство из четырех, шести или двенадцати соединенных диодов (точное количество диодов определяется типом схемы, которая бывает 1-фазной, 3-фазной полумостовой или 3-фазной полномостовой). Система используется в качестве выпрямителя и зачастую устанавливается в генераторах автомобилей. Дело в том, что применение такого моста позволило существенно уменьшить устройство и сделать его более надежным.

Диодные детекторы состоят из диодов и конденсаторов, что позволяет осуществлять модуляцию с низкими частотами из разных сигналов, включая амплитудно-модулированный радиосигнал. Устройства незаменимы для функционирования различных бытовых приборов, например, телевизор или радиоприемник. Также с помощью полупроводниковых диодов можно обеспечить полноценную защиту от нарушения полярности при запуске съемных входов и перегрузках.

Задача переключателей на основе диодов заключается в коммутации высокочастотных сигналов. Для управления схемой используется постоянный электроток, разделение частот и подача сигнала к конденсаторам. Также на основе диодов создается мощная искрозащита, предотвращающая перегрузки и отклонения от допустимого предела напряжения.

Без применения диодов в современной электронике практически не обойтись. Поэтому очень полезно знать, как устроены, как работают и для чего предназначаются столь распространенные устройства.

Способы включения

На r-n переход воздействуют внешние напряжения, а также величина и полярность, которые влияют на конечные показатели электрического тока. При использовании прямого включения положительно заряженный проводник подключается к области р-типа, а отрицательный полюс к области n-типа. В таком случае события будут развиваться следующим образом:

Какую роль выполняют полупроводниковые диоды

  1. Из-за подающего внешнего напряжения в переходе r-n-типа произойдет образование электрического поля, которое будет направлено в противоположную сторону от диффузионного поля внутри.
  2. После этого показатели напряжения поля заметно упадут, что сузит запирающий слой.
  3. Дальше большая часть электронов сможет перемещаться из одной области в другую, а затем возвращаться обратно.
  4. Параметры дрейфующего тока останутся неизменными, так как на них влияет лишь количество заряженных носителей в области r-n.

При росте обратного напряжения ток будет достигать наивысших показателей и перейдет в следующую стадию — насыщение. По мере повышения температуры растут параметры тока насыщения.

Распространенные неисправности

Порой полупроводниковые приборы перестают функционировать, что объясняется естественной амортизацией или завершением установленного эксплуатационного срока. Существуют и другие типы неисправностей, к которым следует отнести:

Читайте также:
Мягкие панели для стены: изготовление декоративной внутренней отделки своими руками, применение в интерьере и этапы пошива мягкого покрытия, как можно оформить

Принцип работы и сферы применения полупроводниковых диодов

  1. Пробой перехода. При таком явлении полупроводник становится обычным проводником, который не имеет установленных свойств и не удерживает электрический ток в установленном направлении. Решить проблему можно с помощью стандартного мультиметра, подающего звуковой сигнал и определяющего уровень сопротивления.
  2. Обрыв перехода. Представляет собой обратный процесс, в результате которого прибор превращается в изолятор. Электрический ток в таком случае пропускается только в одном направлении. Чтобы определить место обрыва, необходимо задействовать тестер с работающими щупами. Если эти элементы недостаточно качественные, то провести точную и правильную диагностику не удастся.
  3. Нарушение герметичности. Любая утечка является серьезной угрозой для нормальной работы полупроводниковых приборов.

Типы пробоев

Существует несколько типов пробоев, которые происходят при росте показателей обратного тока. К ним относятся:

  1. Тепловые пробои.
  2. Электрические пробои.

Первая опасность происходит при несбалансированной работе теплоотводящего элемента или при перегреве r-n-перехода из-за воздействия чрезмерно высоких показателей тока. Проблема теплового пробоя может привести к массе неприятных последствий, включая:

  1. Рост колебания атомов из состава кристалла.
  2. Взаимодействие электронов с проводимой областью.
  3. Стремительный рост температурных показателей.
  4. Деформационные процессы в структуре кристаллов.
  5. Полное повреждение радиокомпонента.

Принцип работы полупроводниковых диодов

Что касается электрического пробоя, то его нельзя назвать необратимым процессом, ведь при такой неприятности кристалл остается работоспособным. Поэтому вовремя принятые меры позволят сохранить диод от разрушения, а также продлить срок его службы.

В зависимости от типа электрические пробои бывают туннельными и лавинными. В первом случае неприятность развивается из-за прохождения чрезмерно высокого напряжения через узкие переходы, в результате чего электроны свободно проскакивают сквозь пробой. Образуются такие дефекты при появлении в молекулах большого количества примесей. Явление вызывает рост обратного тока и снижение напряжения.

Что касается лавинных пробоев, то они случаются из-за воздействия сильных полей, которые разгоняют носитель до пиковых показателей, а затем вышибают из атомов массу валентных электронов. Из-за этого электроны попадают в проводимую область, теряя свои свойства. Специфическое поведение, напоминающее по характеру схождение лавины, стало называться лавинным пробоем.

Без сомнений, современные электроприборы и различные радиотехнические изобретения не могут полноценно функционировать без полупроводниковых диодов. И чтобы продлить срок службы бытовой техники с этими элементами, необходимо знать о принципе их работы, основных неисправностях и способах борьбы с ними.

Полупроводниковые приборы — диод

полупроводниковые приборы

Каждый технически грамотный человек должен знать электронику. Подавляющее большинство устройств современной электроники изготавливаются из полупроводниковых материалов. По этому в рамках этой статьи, я бы хотел рассказать о диодах. Конечно, не зная основных свойств полупроводников, нельзя понять, как работает транзистор. Но одного знакомства только со свойствами полупроводников не достаточно. Необходимо разобраться в очень интересных и не всегда простых явлениях.

полупроводниковые приборы

Краткая справка

Электро-дырочный переход (p-n переход) — это переходный слой между двумя областями полупроводника с разной электропроводностью, в котором существует диффузионное электрическое поле.
Диоды — это полупроводниковые приборы, основой которых является p-n переход. В основе применения полупроводниковых диодов лежит ряд их свойств, таких как асимметрия вольт-амперной характеристики, пробой электро-дырочного перехода, зависимость барьерной емкости от напряжения и т.д.

  • Выпрямительный — асимметрия вольт-амперной характеристики
  • Стабилитрон — пробой
  • Варикап — барьерная ёмкость
  • Импульсный — переходные процессы
Выпрямительные диоды

Выпрямительные диоды предназначены для преобразования переменного сигнала в постоянный.
Рассмотрим принцип действия простейшего однополупериодного выпрямителя на полупроводниковом диоде.

image

Описание работы

При поступлении от первичного источника переменного напряжения, диод будет открыт на положительной полуволне и закрыт на отрицательной. В результате на полуволне через диод и сопротивление нагрузки будет протекать ток. конденсатор при этом заряжается до значения, близкого к пиковому. При уменьшении напряжения во входной цепи диод запирается. При этом конденсатор начинает разряжаться через сопротивление нагрузки.
Недостатком является то, что выпрямительное напряжение сильно зависит от сопротивления нагрузки и имеет большую амплитуду пульсаций. Поэтому такие выпрямители применяются только при высокомерных нагрузках. Для формирования Импульсов применяются амплитудные ограничители, которые могут быть последовательными и параллельными. В последовательных диодных ограничителях диод включается последовательно с сопротивлением нагрузки.

Варикапы

Варикап — полупроводниковый диод, используемый в качестве электрически управляемой емкости.
Эти параметрические диоды работают в обратном направлении, от которого зависит барьерная емкость. Таким образом, варикапы представляют собой конденсаторы переменной емкости, управляемой не механически, а электрически, при изменении обратного напряжения.
Варикапы применяются главным образом для настройки колебательных контуров. Простейшая схема включения варикапа в колебательный контур на рисунке.

Описание работы

Настройка колебательного контура на резонансную частоту может осуществляться двумя способами. Во-первых, посредством варьирования частоты проводимого к контуру переменного входного напряжения Uвх. Во-вторых, за счет изменения частоты собственных колебаний Wо, которая обусловлена индуктивностью и емкостью колебательного контура. Изменяя величину обратного напряжения Uобр., можно регулировать емкость варикапа, а следовательно и менять резонансную частоту контура. Конденсатор Cp является разделительным. Он необходим для предотвращения шунтирования варикапа индуктивностью.

Стабилитроны

стабилитрон

Стабилитрон — это полупроводниковый диод, используемый для стабилизации напряжения.
Участок соответствующий электрическому пробою Uпроб. на котором напряжение слабо зависит от тока, является рабочим. При использовании стабилитрона для стабилизации постоянного напряжения, его включают параллельно нагрузке. Наиболее часто стабилитрон работает в таком режиме, когда напряжение источника нестабильно, а сопротивление нагрузки Rн постоянно. Для установления и поддержания правильного режима стабилизации в этом случае сопротивление Rогр. должно иметь определенное значение. Для исключения температурного дрейфа напряжение используют последовательно соединенный диод. Подобные диоды называются термокомпенсированными стабилитронами.

Читайте также:
Обои Victoria Stenova в интерьере – фото, дизайн и советы
Импульсные диоды

импульсные диоды

Импульсные диоды имеют малую длительность переходных процессов и предназначены для работы в качестве коммутирующих элементов. Существуют различные типы импульсных диодов: сплавные, точечные меза-диоды, диоды Шоттки.
Импульсные диоды широко используют в качестве коммутирующих элементов, т.е. устройств, имеющих два устойчивых состояния: «открыто», когда сопротивления прибора мало и «закрыто», когда велико.
При использовании диода в качестве ключа, могут комбинироваться различные диодные и диодно-транзисторные схемы, предназначенные для работы в цифровой аппаратуре.

В заключении

Прошу прощения за рисунки, элементы схем не по госту(их соотношение), но думаю для наглядного примера сойдет.
PS: стоит ли рассказать о транзисторах?

Полупроводниковый диод

Эксплуатация некоторого электрооборудования невозможна без контроля направления движения электрического тока. В электронике для достижения этой цели эффективно используют полупроводниковый диод. Применение двухполюсника позволяет преобразовывать переменный ток и постоянный в пульсирующий однонаправленный.

Внешний вид полупроводникового диода

Устройство

Полупроводниковый диод – это двухполюсный прибор, изготовленный из полупроводникового вещества, пропускающий ток в одном направлении и практически не пропускающий в другом.

Главный элемент диода – кристаллическая составляющая с p-n переходом, к которой припаивают (приваривают) металлический анод и катод. Прохождение прямого тока осуществляется при подаче на анод положительного, относительно катода, потенциала.

Обратите внимание! В направлении прямого тока происходит движение дырок. Движение электронов осуществляется в противоположном направлении.

Устройство диодов может быть точечным, плоскостным, поликристаллическим.

Дополнительная информация. Принципиальных отличий между точечными и плоскостными двухполюсными приборами не существует.

Устройство точечного диода показано на рисунке (а).

При приваривании тонкой иглы, с нанесённой на неё примесью, к пластине из полупроводника, с обусловленным видом электропроводности, происходит образование полусферического мини p-n перехода, с другим типом проводимости. Это действие получило название – формовка диода.

Изготовление плоскостного двухполюсника осуществляется методом сплавления диффузии. На рисунке (б) представлены сплавной германиевый диод, принцип его устройства. В пластине германия n-типа, при вплавлении туда капли индия при 500 градусах, образуется слой германия р-типа. Выводные контакты, припаиваемые к основной пластине германия и индия, изготавливают из никеля.

При производстве полупроводниковых пластин применяются германий, кремний, арсенид галлия и карбид. В качестве основы точечного и плоскостного двухполюсников используют полупроводниковые монокристаллические пластины с правильным по всему объему строением.

В поликристаллических двухполюсниках p-n переход образуется полупроводниковыми слоями, в состав которых входит большое количество беспорядочно ориентированных малых кристаллов, не представляющих единой монокристаллической формы. Это селеновые, титановые и медно-закисные двухполюсники.

Основные характеристики и параметры диодов

Чтобы прибор правильно работал, выбирать его нужно в соответствии с:

  • Вольтамперной характеристикой;
  • Максимально допустимым постоянным обратным напряжением;
  • Максимально допустимым импульсным обратным напряжением;
  • Максимально допустимым постоянным прямым током;
  • Максимально допустимым импульсным прямым током;
  • Номинальным постоянным прямым током;
  • Прямым постоянным напряжением при номинальном токе;
  • Постоянным обратным током, указываемым при максимально допустимом обратном напряжении;
  • Диапазоном рабочих частот;
  • Ёмкостью;
  • Пробивным напряжением (для защитных диодов и стабилитронов);
  • Тепловым сопротивлением корпуса при различных вариантах монтажа;
  • Максимально допустимой мощностью рассеивания.

Классификация диодов

Промышленность выпускает большое разнообразие полупроводниковых вентилей, которые могут применяться во многих отраслях хозяйствования.

Классифицировать эти устройства можно по общим признакам:

  1. По материалу полупроводника, из которого они изготавливаются (кремний, германий, арсенид галлия);
  2. По физическим процессам, совершающим работу (в туннельных, в фотодиодах, в светодиодах);
  3. По предназначению (стабилитрон, выпрямительный, импульсный, варикап и др.);
  4. По технике изготовления электрического перехода (сплавной, диффузный и др.);
  5. По виду (типу) электрического перехода (точечный, плоскостной).

Классификация полупроводниковых двухполюсников

Дополнительная информация. В основном используются классификации по типу электрического перехода и по назначению диода.

Типы диодов по назначению

По функциональному назначению различают диоды:

  • Выпрямительный (для преобразования переменного тока в постоянный);
  • Импульсный (применяют в импульсных режимах);
  • Шотки (для преобразования и обработки сверхвысокочастотных сигналов при частоте более 300 МГц);
  • Детекторный СВЧ (для детектирования сверхвысокочастотных сигналов);
  • Переключающий СВЧ (для управления в устройствах уровнем СВЧ мощности);
  • Стабилитрон (для стабилизации напряжения);
  • TVS (для подавления импульсных электрических перенапряжений, превышающих напряжение лавинного пробоя прибора);
  • Стабистор (для стабилизации напряжения);
  • Стабилитрон с напряжением, равняющимся ширине запрещенной зоны;
  • Лавинно-пролетный (ЛПД) (для генерации сверхвысокочастотных колебаний);
  • Туннельный (для генерирования колебаний);
  • Обращенный (проводимость которого при обратном напряжении больше, чем при прямом);
  • Варикап (применяют как элемент с управляемой электричеством ёмкостью);
  • Фотодиод (для нагнетания под воздействием света заряженных неосновных носителей в базу);
  • Светодиод (для излучения основных носителей заряда под воздействием электрического тока).

Типы диодов по частотному диапазону

Классификация диодов осуществляется по рабочей частоте. Двухполюсники могут быть:

  1. Низкочастотными, с частотой меньше 1000 Гц;
  2. Высокочастотными, с частотой больше 1000 Гц;
  3. Импульсными, используемыми в цепи, где требуется высокая скорость срабатывания.

Диоды с выпрямляющим переходом металл-полупроводник отличаются меньшим, чем у двухполюсников с p-n переходом, напряжением пробоя и более высокими частотными характеристиками (Шоттки). Маломощные высокочастотные и импульсные диоды (вентили) работают на высоких частотах или в быстродействующей импульсной схеме.

Типы диодов по размеру перехода

По размеру перехода диоды делятся на:

  1. плоскостные,
  2. точечные.

Классификация по размеру перехода и условные обозначения

В точечных приборах применяются пластины германия или кремния с электропроводностью n-типа, толщиной 0,1 …0,6 мм и площадью 0,5 … 1,5 кв. мм. В плоскостных устройствах образование р-n перехода происходит между двумя полупроводниками с различными типами электропроводности.

Читайте также:
Отделка поверхностей искусственным камнем. Виды, состав и характеристики

Обратите внимание! Площадь перехода у разных двухполюсников находится в пределах от сотых долей квадратного миллиметра до десятков квадратных сантиметров (в силовых диодах).

Типы диодов по конструкции

По конструкции корпуса п/п диоды могут быть в штыревом, таблеточном, с корпусом под запрессовку, модульном исполнении. Штыревой корпус состоит из мощной основы со штырем и герметично закрывающейся крышки. В образовавшуюся непроницаемую полость помещают структуру полупроводника.

Обратите внимание! Различают двухполюсники прямой полярности, когда анод находится на основании, и обратной полярности, когда катод – на основании.

Корпусы фланцевой конструкции отличаются от штыревой конструкции отсутствием штыря и внешней формой основания в виде фланца. Особенности штыревой и фланцевой конструкций диодов способствуют процессу одностороннего охлаждения их структуры. Применяют эти двухполюсники для токов 320-500 А.

Таблеточный корпус приспособлен для присоединения отводов тепла и проводников тока к основанию посредством прижимного устройства. Такая конструкция позволяет осуществлять односторонний и двухсторонний тепловой отвод от структуры прибора. Используется на токах 250 А и выше.

Корпус диода под запрессовку состоит из пустотелого цилиндра с рифлёной поверхностью и дна – основания, на котором расположена структура полупроводника. Закрытие второго торца цилиндра осуществляется проходным изолятором с гибким или жестким выводом.

Двухполюсники в корпусах под запрессовку производятся в прямой полярности, когда анод находится на основании, и в обратной полярности, когда катод находится на основании. Корпус под запрессовку предусматривает одностороннее охлаждение полупроводника, используется на ток до 25 А.

Модульные конструкции полупроводниковых двухполюсников состоят из основания с изолирующей теплопроводной прокладкой, на которой расположена одна или несколько п/п структур, и защитного корпуса с электрическими выводами. Основание устройства, обеспечивающее отвод тепла, выпускается электрически изолированным от выводов полупроводниковых структур, включенных в состав модуля. Модульные конструкции изготавливают в разных комбинациях полупроводников на токи до 160 А.

Другие типы

Селеновые выпрямители, уступающие устройствам из кремния и германия по многим показателям, обладают уникальными возможностями самовосстановления при пробое. В месте выгорания селена не происходит короткого замыкания.

Дополнительная информация. Радиационная стойкость селеновых вентилей намного выше, чем у других выпрямителей.

Медно-закисные выпрямители характеризуются низким обратным напряжением, низкой рабочей температурой, малым отношением прямого и обратного сопротивления.

Обратите внимание! В настоящее время эти вентили больше не применяются, так как на рынке появились более совершенные выпрямительные полупроводниковые приборы.

Маркировка диодов

Система обозначений полупроводниковых диодов включает в себя код, состоящий из букв и цифр.

Маркировка приборов

Первая составляющая маркировки может быть представлена в виде цифры для приборов специального назначения или в виде буквы для приборов широкого применения.

Если в обозначении материала используется:

  • Г или 1, то это германий и соединения германия;
  • К или 2, это кремний и соединения кремния;
  • А или 3 – арсенид галлия;
  • И или 4 – фосфид индия.

Для обозначения второй цифры в маркировке используют:

  • Д – в выпрямительных, импульсных;
  • Ц – в выпрямительных столбах и мостах;
  • В – в обозначениях варикапов;
  • И – в туннельных;
  • А – в СВЧ;
  • С – в стабилитронах и стабисторах;
  • Г– в генераторах шума;
  • Л – в излучающих светодиодах.

Третий элемент характеризует основные признаки устройства, зависит от его подкласса. Например, 2Д204В – это диод кремниевый выпрямительный с постоянной и средней токовой величиной 0,3-10 А, номером разработки 04, группой В.

Преимущества непосредственного включения в схему

Включение полупроводниковых приборов непосредственно в схему даёт гарантированные плюсы:

  1. Высококачественную обработку сигналов;
  2. Полную взаимозаменяемость устройств;
  3. Миниатюрность и долговечность использования;
  4. Удобство при монтаже и замене;
  5. Доступность приобретения и дешевизну цен.

Дополнительная информация. Можно подобрать не только отечественный, но и зарубежный аналог полупроводникового прибора.

Вольтамперные характеристики (идеальная и реальная)

ВА характеристика приводится в виде взаимосвязи тока внешней цепи p-n перехода прибора и полярности напряжения на его электродах. Это соотношение можно получить экспериментально или рассчитать на основании уравнения вольтамперной характеристики.

Идеальная характеристика

Основной задачей выпрямительного диода является проведение электрического тока в одном направлении и непропускание его в обратном. Поэтому при прямой подаче напряжения (плюс подаётся на анод, а минус – на катод) идеальный прибор должен быть отличным проводником, с сопротивлением, равным нулю. При противоположном подключении, наоборот, должен иметь огромное сопротивление, став полным изолятором.

ВАХ идеального прибора

Дополнительная информация. На практике идеальная модель применяется в цифровой электронике, потому что в этой сфере имеет значение только логическая функция устройства.

Реальная ВАХ

Реальный диод, благодаря структуре полупроводника, имеет множество минусов, в сравнении с идеальным двухполюсником.

ВАХ реального прибора

Параметры промышленных п/п элементов значительно разнятся с теми, которые для удобства принимаются за идеальные. В реальности, нелинейная ВАХ показывает большие отклонения и по значениям тока, и по крутизне преобразования. Поэтому прибор может выдержать лишь нагрузки, представленные этими предельными показателями:

  • Максимальным прямым выпрямленным током;
  • Током обратной утечки;
  • Максимальным прямым и обратным напряжением;
  • Падением потенциала на p-n переходе;
  • Предельной рабочей частотой обрабатываемого сигнала.

Вольтамперная характеристика для диодных элементов – важный параметр, по которому можно определить, как будет работать прибор в электрической схеме.

Важно! Прежде, чем использовать двухполюсник по назначению, нужно изучить ВАХ этого устройства.

Видео

Принцип работы диода и сфера его применения

Диод – это прибор, состоящий из двух электродов с односторонней проводимостью. Их используют в выпрямителях электрического тока, в различной радиоаппаратуре, блоках питания и прочих электрооборудовании. В основе его работы лежит такое физическое явление, как полупроводимость. Они имеют самую различную мощность, а также могут быть объединены в диодные мосты, что повышает их эффективность.

Читайте также:
Рулонный газон. Особенности, виды, укладка и цена рулонного газона

Любой диод имеет катод и анод. На схемах эта радиодеталь обозначается в форме треугольника со стрелкой на катод. В данной статье будет рассмотрен принцип работы диода, как он работает, для чего служит и какую структуру он имеет. В качестве дополнения, статье имеет в себе два видеоролика и одну научно-популярную статья о диодах.

что такое диод

Что такое полупроводниковый диод – выпрямитель переменного тока

Диодами называют двухэлектродные приборы, обладающие односторонней проводимостью электрического тока. Это их основное свойство используют, например, в выпрямителях, где диоды преобразуют переменный ток электросети в ток постоянный для питания радиоаппаратуры, в приемниках — для детектирования модулированных колебаний высокой частоты, то есть преобразования их в колебания низкой (звуковой) частоты.

Наглядной иллюстрацией этого свойства диода может быть такой опыт. В цепь, составленную из батареи 3336Л и лампочки от карманного фонаря (3,5 В X 0,26 А), включи любой плоскостной диод, например, из серии Д226 или Д7, но так, чтобы анод диода, обозначаемый условно треугольником, был бы соединен непосредственно или через лампочку с положительным полюсом батареи, а катод, обозначаемый черточкой, к которой примыкает угол треугольника, с отрицательным полюсом батареи. Лампочка должна гореть.

Размеры диодов.

Измени полярность включения батареи на обратную — лампочка гореть не будет. Если сопротивление диода измерять омметром, го в зависимости от того, как подключить его к зажимам прибора, омметр покажет различное сопротивление: в одном случае малое (единицы или десятки ом), в другом — очень большое (десятки и сотни килоом). Этим и подтверждается односторонняя проводимость диода.

У диода два электрода: катод — отрицательный и анод — положительный (рис. 13). Катодом служит пластинка германия, кремния или какого-либо другого полупроводника, обладающего электронной проводимостью, или сокращенно полупроводник n-типа (n — начальная буква латинского слова negativus — «отрицательный»), а анодом – часть объема этой же пластинки, но- с так называемой дырочной про-водимостью, или сокращенно полупроводник р-типа (р — начальная буква латинского слова positivus — «положительный»).

Между электродами образуется так называемый р-n переход — пограничная зона, хорошо проводящая ток от анода к катоду и плохо в обратном направлении (за направление тока принято направление, противоположное движению электронов). Диод может находиться в одном из двух состояний: открытом, то есть пропускном, либо закрытом, то есть непропускном. Диод бывает открыт, когда к нему приложено прямое напряжение Uпр, иначе, его анод соединен с плюсом источника напряжения, а катод — с минусом.

В этом случае сопротивление р-n перехода диода мало и через него течет прямой ток IПр, сила которого зависит от сопротивления нагрузки (в нашем опыте — лам-почка от карманного фонаря). При другой полярности питающего напряжения на р-n переход диода прикладывается обратное напряжение Uобр. В этом случае диод закрыт, его сопротивление велико и в цепи течет лишь незначительный обратный ток диода Iобр. О зависимости тока, проходящего через диод, от значения и полярности напряжения на его электродах лучше всего судить по вольтамперной характеристике диода, которую можно снять опытным путем.

Разные типы диодов.

Как работает диод

Можно физически сами диоды не видеть, но результат их действия окружает нас повсюду. Эти устройства позволяют управлять потоком тока в указанном направлении. Существует много различных вариантов исполнения диодов. В каких случаях это бывает необходимо? Ниже будут рассмотрены примеры и в некоторой степени принцип работы полупроводниковых диодов. Если добавить две металлические обкладки к P и N рабочим областям материала, то получатся электроды анод и катод. Схема подключения электродов к источнику может работать следующим образом:

Принцип работы диода и сфера его применения

подача напряжения с батарейки к электроду N обеспечивает притяжение позитронов, соответственно к P электроду – электронов; отсутствие напряжения все возвращает в исходное состояние; смена полярности подаваемого напряжения обеспечивает притяжение электронов в обратном направлении к плюсовой пластине, а позитронов – к минусовой. В последнем случае избыточные заряды скапливаются на металлических обкладках, тогда как в центре самого материала образуется мертвая изолирующая зона.

Таким образом, центральный участок материала становится диэлектриком. В таком направлении устройство не пропускает ток. Слово происходит от di (double) + -ode. Определение терминов катод и анод диода, относящихся к контактам, известно каждому человеку. Катод – отрицательный электрод, анод – положительный. Если подать на анод плюс, а на катод – минус, то диод откроется, и электроток по нему потечет. Таким образом, диод – это устройство, которое имеет два электрода: катод и анод. Простое нелинейное электронное устройство, состоящее из двух разных полупроводников. Как устроен диод, хорошо видно на изображении.

Виды диодов.

Диоды и их разновидности

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в “семейство” диодов входит не один десяток полупроводниковых приборов, носящих название “диод”. Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод – катод, один из которых обладает электропроводностью типа р, а другой – n.

Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький).

Читайте также:
Разновидности рулонных штор «день-ночь»

Принцип работы диода и сфера его применения

Внутреннее сопротивление диода (открытого) – величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.

Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др. Треугольная часть является АНОД’ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются для защиты разных устройств от неправильной полярности включения и т. п.

Какие разновидности диодов существуют.

Существует несколько основных видов диодов:

  • Диод Шоттки. Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами. Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так:
  • Стабилитрон. Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений. Основным параметром стабилитронов является напряжение стабилизации, стабилитроны имеют различные напряжения стабилизации, например 3в, 5в, 8.2в, 12в, 18в и т.п.
  • Варикап. Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.
  • Тиристор. Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое. Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод – используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92. Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках.
  • Симистор. Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях. Светодиод. Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.
  • Инфракрасный диод. Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне . Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды. Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка.
  • Фотодиод. Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.

Схема выпрямления

Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух. Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?» Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.

В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В. А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.

Читайте также:
Натяжные потолки: гарпунная система установки своими руками

К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной. Следует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.

Если потенциал верхнего конца вторичной обмотки трансформатора положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт. Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.

Что означает ВАХ диода?

ВАХ диода это просто напросто вольтамперная характеристика диода. Она описывает зависимость тока от напряжения прикладываемого к диоду. Давайте рассмотрим это обстоятельство чуток подробнее. Слева у нас показан вольтамперной характеристики для резистора. Как видите, зависимость тока от напряжения линейная, чем больше напряжение приложенное к резистору тем больше ток.

Для диода кривая зависимости явно отличается. Если мы подключим к аноду положительный потенциал, а к катоду отрицательный и будем плавно повышать напряжение то будет происходить следующее. Ток в начальный момент времени будет очень мал поэтому диод еще не будет открыт по полной. Но если мы будем прибавлять напряжение то это приведет к полному открытию диода.

Хорошо, а что же случится если мы подключим диод иначе? Положительный потенциал приложим к катоду, а отрицательный к аноду. В этом случае график ВАХ диода у нас буквально перевернется и картина будет следующая. При плавном повышении напряжения ток будет повышаться, но величина тока будет настолько незначительной, что им зачастую пренебрегают. Этот ток при обратном подключении называют еще током утечки.

Принцип работы диода и сфера его применения

Только есть здесь один нюанс. Если мы будем и дальше повышать обратное напряжения на диоде, то можно добиться резкого повышения тока. На вольтамперной характеристике этот момент выглядит в виде небольшого «хвостика» причудливо оттопыренного в конце. Это так называемый обратимый пробой диода. Такой пробой не страшен, если напряжение уменьшить то ток снова уменьшится и будет вновь очень незначительным. Явление подобного обратимого пробоя является побочным и для диода его всегда стараются сводить к минимуму.

Как видите всю эту информацию мы получили лишь используя график ВАХ, но будет полезно все это проверить своими руками на практике. Действительно, соберите несложную схему и сделайте несколько замеров мультиметром, это пойдет на пользу. Вот только диод нужно уметь правильно подключать, ато ведь его легко можно пожечь, так что читайте дальше -поведаю обо всем.

Для чего используют диоды и как включать в цепь?

О том как функционирует диод мы поговорили, вот только пока непонятно как его можно применять и вообще для чего все это. Для начала рассмотрим простейший пример включения диода в электрическую цеп, причем в переменке. И для начала простой вопрос, зачем здесь резистор? Внимательный читатель посмотрит вольтамперную характеристику диода и все станет ясно. Ток в диоде без дополнительной нагрузке начнет очень быстро расти, возникнет подобие короткого замыкания от чего диоду может не поздоровиться. Дабы не произошло подобного конфуза применяют токоограничивающий резистор.

Свойство односторонней проводимости диода применяется не просто широко а повсеместно. В состав любого блока питания входят диоды как сами по себе так и в составе диодного моста. Ведь в любом блоке питания происходит один очень важный момент, а именно происходит превращение переменного тока в постоянный. А вот эту ответственную миссию берут на себя именно диоды. Полное превращение мы рассмотрим когда будем обсуждать диодные мосты, но как ведет себя диод в переменном токе мы сейчас увидим. Схема все та же что и была, диод и резистор включенные в цепь переменного тока.

Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики

Полупроводниковый диод получил широкое распространение в электротехнике и в электронике. Обладая невысокой стоимостью и хорошим соотношением мощности и габаритов, он быстро вытеснил вакуумные приборы аналогичного назначения.

Обозначение полупроводникового диода на электрической схеме.

Устройство и принцип работы полупроводникового диода

Полупроводниковый диод состоит из двух областей (слоев), изготовленных из полупроводника (кремния, германия и т.п.). Одна область имеет избыток свободных электронов (n-полупроводник), другая – недостаток (p-полупроводник) – это достигается легированием основного материала. Между ними находится небольшая по размерам зона, в которой избыток свободных электронов из n-участка «закрывает» дырки из p-участка (происходит рекомбинация за счет диффузии), и свободных носителей заряда в этой области нет. При приложении прямого напряжения область рекомбинации невелика, её сопротивление мало, и диод проводит ток в этом направлении. При обратном напряжении зона без носителей увеличится, сопротивление диода возрастет. В этом направлении ток не пойдет.

Виды, классификация и графическое обозначение на электрических схемах

В общем случае диод на схеме обозначается в виде стилизованной стрелки, указывающей направление тока. Условно-графическое изображение (УГО) прибора содержит два вывода – анод и катод, которые в прямом подключении соединяются с плюсом электрической цепи и с минусом соответственно.

Читайте также:
Полиэстер — что за ткань, как делают, где применяют

Условно-графическое обозначение диода.

Существует большое количество разновидностей этого двухполюсного полупроводникового устройства, которые в зависимости от назначения могут иметь несколько отличающееся УГО.

Стабилитроны (диоды Зенера)

Условно-графическое изображение стабилитрона.

Стабилитрон – это полупроводниковый прибор, работающий при обратном напряжении в зоне лавинного пробоя. В этой области напряжение на диоде Зенера стабильно в широком диапазоне изменения тока через прибор. Это свойство используется для стабилизации напряжения на нагрузке.

Стабисторы

Стабилитроны хорошо выполняют свою работу по стабилизации напряжений от 2 В и выше. Чтобы получить неизменное напряжение ниже этого предела, используются стабисторы. Легированием материала, из которого изготовлены данные приборы (кремний, селен) добиваются наибольшей вертикальности прямой ветви характеристики. В этом режиме и работают стабисторы, выдавая образцовое напряжение в пределах 0,5…2 В на прямой ветви вольт-амперной характеристики при прямом напряжении.

Диоды Шоттки

Условно-графическое изображение диода Шоттки.

Диод Шоттки построен по схеме полупроводник-металл, и не имеет обычного перехода. За счет этого удалось получить два важных свойства:

  • пониженное падение прямого напряжения (около 0,2 В);
  • повышенные рабочие частоты за счёт снижения собственной емкости.

К недостаткам относят увеличенные значения обратных токов и пониженную толерантность к уровню обратного напряжения.

Варикапы

Условно-графическое изображение варикапа.

Каждый диод имеет электрическую емкость. Обкладками конденсатора служат два объёмных заряда (области p и n полупроводников), а диэлектриком – запирающий слой. При приложении обратного напряжения этот слой расширяется, и ёмкость уменьшается. Это свойство присуще всем диодам, но у варикапов ёмкость нормирована и известна при заданных пределах напряжения. Это позволяет использовать такие приборы в качестве конденсаторов переменной ёмкости и применять для настройки или точной подстройки контуров с помощью подачи обратного напряжения различного уровня.

Туннельные диоды

Условно-графическое обозначение туннельного диода.

Эти приборы имеют на прямом участке характеристики прогиб, при котором увеличение напряжения вызывает уменьшение тока. В этой области дифференциальное сопротивление отрицательно. Данное свойство позволяет применять туннельные диоды в качестве усилителей слабых сигналов и генераторов на частотах свыше 30 ГГц.

Динисторы

Условно-графическое изображение динистора.

Динистор — диодный тиристор – имеет структуру p-n-p-n и S-образную ВАХ, не проводит ток, пока приложенное напряжение не достигнет порогового уровня. После этого открывается и ведет себя как обычный диод, пока ток не упадет ниже уровня удержания. Используются динисторы в силовой электронике в качестве ключей.

Фотодиоды

Условно-графическое изображение фотодиода.

Фотодиод выполняется в корпусе с доступом видимого света к кристаллу. При облучении p-n перехода в нём возникает ЭДС. Это позволяет использовать фотодиод как источник тока (в составе солнечных батарей) или как датчик освещенности.

Светодиоды

Условнографическое изображение светодиода.

Основное свойство светодиода – способность излучать свет при прохождении тока через p-n переход. Это свечение не связано с интенсивностью нагрева, как у лампы накаливания, поэтому прибор экономичен. Иногда используется непосредственное свечение перехода, но чаще оно применяется в качестве инициатора зажигания люминофора. Это позволило получить ранее недостижимые цвета светодиодов, например, синий и белый.

Диоды Ганна

Хотя диод Ганна имеет обычное условно-графическое обозначение, в полном смысле диодом он не является. Потому что у него отсутствует p-n переход. Этот прибор состоит из пластины из арсенида галлия на металлической подложке.

Не вдаваясь в тонкости процессов: при приложении электрического поля определенной величины в устройстве, возникают электрические колебания, период которых зависит от размеров полупроводниковой пластины (но в определенных пределах частоту можно корректировать внешними элементами).

Диоды Ганна используются в качестве генераторов на частотах 1 ГГц и выше. Плюсом прибора является высокая стабильность частоты, а недостатком – небольшая амплитуда электрических колебаний.

Магнитодиоды

Обычные диоды слабо подвержены влиянию внешних магнитных полей. Магнитодиоды имеют особую конструкцию, увеличивающую чувствительность к данному воздействию. Их делают по технологии p-i-n с удлиненной базой. Под действием магнитного поля сопротивление прибора в прямом направлении растёт, и это можно использовать для создания бесконтактных элементов переключения, преобразователей магнитных полей и т.п.

Лазерные диоды

Принцип действия лазерного диода основан на свойстве пары «электрон-дырка» во время рекомбинации при определенных условиях испускать монохроматическое и когерентное видимое излучение. Способы создания этих условий различны, для пользователя необходимо лишь знать длину излучаемой диодом волны и её мощность.

Лазерный полупроводниковый диод.

Лавинно-пролетные диоды

Эти приборы используются на СВЧ. При определенных условиях в режиме лавинного пробоя на характеристике диода возникает участок с отрицательным дифференциальным сопротивлением. Это свойство ЛПД позволяет использовать их в качестве генераторов, работающих на длинах волн до миллиметрового диапазона. Там возможно получить мощность не менее 1 Вт. На более низких частотах с таких диодов снимают до нескольких киловатт.

PIN-диоды

Эти диоды изготовлены по p-i-n технологии. Между легированными слоями полупроводников находится слой из нелегированного материала. По этой причине этого выпрямительные свойства диода ухудшены (при обратном напряжении снижена рекомбинация за счёт отсутствия прямого контакта между p- и n-зонами). Зато за счет разнесения областей объемного заряда паразитная емкость становится очень маленькой, в закрытом состоянии практически исключено просачивание сигнала на высоких частотах, и pin-диоды можно использовать на ВЧ и СВЧ в качестве переключающих элементов.

Основные характеристики и параметры диодов

К основным характеристикам полупроводниковых диодов (кроме узкоспециализированных) следует отнести:

  • максимально допустимое обратное напряжение (постоянное и импульсное);
  • граничная рабочая частота;
  • прямое падение напряжения;
  • рабочий диапазон температур.

Остальные важные характеристики лучше рассмотреть на примере ВАХ диода – так нагляднее.

Читайте также:
Ремонт стиральных машин LG своими руками

Вольт-амперная характеристика полупроводникового диода

Вольт-амперная характеристика полупроводникового диода состоит из прямой и обратной ветви. Расположены они в I и в III квадрантах, так как направление тока и напряжения через диод всегда совпадают. По вольт-амперной характеристике можно определить некоторые параметры, а также наглядно увидеть, на что влияют характеристики прибора.

Вольт-амперная характеристика полупроводникового диода.

Напряжение порога проводимости

Если к диоду приложить прямое напряжение и начать его увеличивать, то в первый момент ничего не произойдет – ток расти не будет. Но при определенном значении диод откроется, и ток будет увеличиваться в соответствии с напряжением. Это напряжение называется напряжением порога проводимости и на ВАХ отмечено, как Uпорога. Оно зависит от материала, из которого изготовлен диод. Для самых распространенных полупроводников этот параметр составляет:

  • кремний – 0,6-0,8 В;
  • германий – 0,2-0,3 В;
  • арсенид галлия – 1,5 В.

Свойство германиевых полупроводниковых приборов открываться при малом напряжении используется при работе в низковольтных схемах и в других ситуациях.

Максимальный ток через диод при прямом включении

После того, как диод открылся, его ток растет вместе с увеличением прямого напряжения. Для идеального диода этот график уходит в бесконечность. На практике этот параметр ограничен способностью полупроводникового прибора рассеивать тепло. При достижении определенного предела диод перегреется и выйдет из строя. Чтобы этого избежать, производители указывают наибольший допустимый ток (на ВАХ – Imax). Его можно приблизительно определить по размеру диода и его корпусу. В порядке убывания:

  • наибольший ток держат приборы в металлической оболочке;
  • на среднюю мощность рассчитаны пластиковые корпуса;
  • диоды в стеклянных оболочках используются в слаботочных цепях.

Металлические приборы можно устанавливать на радиаторах – это увеличит мощность рассеяния.

Обратный ток утечки

Если приложить к диоду обратное напряжение, то малочувствительный амперметр ничего не покажет. На самом деле только идеальный диод не пропускает никакого тока. У реального прибора ток будет, но он очень мал, и называется обратным током утечки (на ВАХ – Iобр). Он составляет десятки микроампер или десятые доли миллиампер и намного меньше прямого тока. Определить его можно по справочнику.

Напряжение пробоя

При определенном значении обратного напряжения возникает резкий рост тока, называемый пробоем. Он носит туннельный или лавинный характер и является обратимым. Этот режим используется для стабилизации напряжения (лавинный) или для генерации импульсов (туннельный). При дальнейшем увеличении напряжения пробой становится тепловым. Этот режим необратим и диод выходит из строя.

Паразитическая ёмкость pn-перехода

Уже упоминалось, что p-n переход обладает электрической ёмкостью. И если в варикапах это свойство полезно и используется, то в обычных диодах оно может быть вредным. Хотя ёмкость составляет единицы или десятки пФ и на постоянном токе или низких частотах незаметна, с повышением частоты её влияние возрастает. Несколько пикофарад на ВЧ создадут достаточно низкое сопротивление для паразитных утечек сигнала, сложатся с существующей ёмкостью и изменят параметры цепи, а совместно с индуктивностью вывода или печатного проводника образуют контур с паразитным резонансом. Поэтому при производстве высокочастотных приборов принимают меры для снижения ёмкости перехода.

Маркировка диодов

Проще всего маркируются диоды в металлическом корпусе. В большинстве случаев на них наносится обозначение прибора и его цоколевка. Диоды в пластиковом корпусе маркируются кольцевой меткой со стороны катода. Но нет гарантии, что производитель строго соблюдает это правило, поэтому лучше обратиться к справочнику. Ещё лучше прозвонить прибор мультиметром.

Отечественные стабилитроны малой мощности и некоторые другие приборы могут иметь метки из двух колец или точек разного цвета на противоположных сторонах корпуса. Чтобы определить тип подобного диода и его цоколевку, надо взять справочник или найти в интернете онлайн-определитель маркировки.

Области применения диодов

Несмотря на простое устройство, полупроводниковые диоды широко используются в электронике:

  1. Для выпрямления переменного напряжения. Классика жанра – используется свойство p-n перехода проводить ток в одном направлении.
  2. Диодные детекторы. Здесь используется нелинейность ВАХ, позволяющая выделять из сигнала гармоники, нужные из которых могут быть выделены фильтрами.
  3. Два диода, включенные встречно-параллельно, служат ограничителем мощных сигналов, которые могут перегрузить последующие входные каскады чувствительных радиоприёмных устройств.
  4. Стабилитроны могут включаться в качестве искрозащитных элементов, не позволяющих высоковольтным импульсам попасть в цепи датчиков, установленных в опасных зонах.
  5. Диоды могут служить переключающими устройствами в высокочастотных схемах. Они открываются постоянным напряжением и пропускают (или не пропускают) ВЧ сигнал.
  6. Параметрические диоды служат усилителями слабых сигналов в диапазоне СВЧ за счет наличия в прямой ветви характеристики участка с отрицательным сопротивлением.
  7. На диодах собирают смесители, работающие в передающей или приёмной аппаратуре. Они смешивают сигнал гетеродина с высокочастотным (или низкочастотным) сигналом для последующей обработки. Здесь также используется нелинейность ВАХ.
  8. Нелинейная характеристика позволяет применять диоды на СВЧ в качестве умножителей частоты. При прохождении сигнала через умножительный диод, выделятся высшие гармоники. Дальше их можно выделить методом фильтрации.
  9. Диоды применяют в качестве элементов настройки резонансных цепей. При этом используется наличие управляемой емкости у p-n перехода.
  10. Некоторые виды диодов применяют в качестве генераторов в диапазоне СВЧ. В основном это туннельные диоды и приборы с эффектом Ганна.

Это только краткое описание возможностей полупроводниковых приборов с двумя выводами. При глубоком изучении свойств и характеристик с помощью диодов можно решать многие задачи, поставленные перед разработчиками электронной аппаратуры.

Ссылка на основную публикацию