Расчет простенка кирпичной стены пример

Расчёт сечений простенка первого этажа.

1. Методические указания по расчёту кирпичных несущих стен многоэтажного здания.Стены здания помимо несущей способности должны обладать теплоограждающими свойствами. Часто последние диктуют назначение толщины стены. В таком случае задачей экономического проектирования становится выбор оптимальных марок кирпича и раствора, при которых несущая способность стен используется без излишних запасов. Несущие стены вместе с перекрытиями и покрытием образуют пространственную систему, воспринимающую все действующие на здание нагрузки. При этом стены рассматривают опирающимися в горизонтальном направлении на поперечные конструкции, перекрытия и покрытие. По степени деформативности опоры делятся на жёсткие и упругие. Жёсткими опорами считают поперечные рамы с замоноличенными узлами и поперечные стены толщиной не менее 12 см. При жёсткой конструктивной схеме стену рассчитывают расчленённой по высоте на однопролётные балки (рис. 1) с расположением шарниров в плоскостях опирания перекрытий. Нагрузку от верхних этажей принимают приложенной в центре тяжести сечения стены вышележащего этажа, а нагрузку в пределах данного этажа считают приложенной с фактическим эксцентриситетом. Расстояние от точки приложения опорной реакции балок или плит до внутренней поверхности стены принимают равным одной трети глубины заделки, но не более 7 см.

а) б) в) Рис. 1. К расчёту несущей кирпичной стены: а – конструктивная схема; б – расчётная схема; в – эпюра изгибающих моментов.

Для наружных стен зданий массового строительства при нормальной влажности помещений требуется марка раствора для кладки не ниже М10. Сплошную кладку из кирпича марки не ниже М50 на растворе М10 и выше относят к первой группе кладок.

Установлены предельные отношения высоты этажа к толщине стены без проёмов, например при первой группе кладок: H/h ≤ 20. Для стен, ослабленных проёмами, эта величина умножается на коэффициент k= ,где Ant и Abr определяют по горизонтальному сечению стены.

На стены воздействуют постоянная (собственный вес) и временные нагрузки (ветровая, снеговая и эксплутационная на перекрытиях) в различных сочетаниях: с одной или несколькими (не менее двух) временными нагрузками. В последних сочетаниях все временные нагрузки принимают с коэффициентом сочетания 0,9. Для производственных зданий со значительными эксплутационными нагрузками (более 3 кН/м 2 ), если высота зданий не превышает их ширину, наиболее невыгодным будет сочетание постоянной и эксплутационной нагрузок без уменьшенного коэффициента. В других случаях для высоких

высоких зданий относительно малой ширины может потребоваться учёт сочетаний нагрузок вместе с ветровой.

2. Сбор нагрузки на простенок первого этажа. Задана толщина стены h=64см. Нормативный удельный вес сплошной кладки из полнотелого кирпича и тяжёлого раствора для штукатурки по табл. 23 [7] g=18 кН/м 3 . Размеры оконных проёмов: ширина В1=1,5 м; высота Н1=3 м. Сечение простенков: 64×142 см (2×5,5 кирпичей). Высота каждого из пяти этажей Н=4,2 м (см. рис. 1).

а) б) Рис. 2. Схема распределения давления от опоры ригеля в кирпичной стене: а – фасад; б – план

Давление в каменной кладке распределяется под углом 45°. Пирамида продавливания от опоры ригеля не пересекает перемычек (рис. 2) и давление от ригелей воспринимает только один простенок. Другой соседний простенок несёт только вес стены.

А. Нагрузка от веса стены и слоя внутренней штукатурки со средней толщиной 2 см и шириной 3 м:

Б. Нагрузка от совмещённой кровли и трёх перекрытий при ширине грузовой площади стены l2/2-h/2=4,2·3/2-0,64/2=6,0 м

в том числе длительная нагрузка

В. Нагрузка от перекрытия второго этажа

Расчёт сечений простенка первого этажа.

А. Общие данные. Расчётная длина простенка равна высоте этажа l=H=4,2м. Упругая характеристика кладки из керамического кирпича на растворе М75, α=1000.

Приведённая гибкость простенка

Коэффициент продольного изгиба – φ=1.

Коэффициент, учитывающий влияние длительности действия нагрузки, при h=64см > 30см φl=1.

Б. Простенок, воспринимающий вес стены. Нагрузка от веса стены Nс=447кН.

Вес простенка g1=(0,64+0,02)(1,42+0,08)·3·18·1,1= 58,8кН.

Полная нагрузка на уровне низа проёма N=Nc+g1=506кН.

Требуемое расчётное сопротивление сжатию кладки, находимое из уравнения,

RN/(φAk)= 506/(0,84·64·142)=0,07 кН/см2=0,7 МПа

R=0,7 МПа соответствуют два вида кладки: из кирпича М75 на растворе М10 или кирпича М50 на растворе М25. Окончательный выбор материалов следует сделать после расчёта более нагруженного простенка.

В. Простенок, воспринимающий вес стены и нагрузку от перекрытий и покрытия. Нагрузка от перекрытия второго этажа N2=1290 кН приложена на расстоянии от внутренней поверхности стены, равном ар/3≤7см, где ар=38см (глубина заделки ригеля в стену): 38/3=12,7см >7см.

Читайте также:
Обрамление и декор камина: в разных стилях, дизайнерские проекты

Изгибающий момент от внецентренного приложения нагрузки в уровне перекрытия

M=N2(h/2-7)=1290(32-7)=32250 кН·см.

То же, в верхнем сечении простенка (см. рис. 1)

Mb=М(Н-0,3)/Н=32250(4,2-0,3)/4,2=29250 кН·см.

Продольная сила в верхнем сечении простенка

Эксцентриситет приложения продольной силы

Величина коэффициента ω

Коэффициент продольного изгиба при внецентренном сжатии

Требуемое расчётное сопротивление сжатию кладки с сетчатым армированием

Rskb= = =0,74 кН/см 2 = 7,4МПа.

Допустимое расчётное сопротивление неармированной кладки

RRskb/1,8= 7,4/1,8= 4,1 МПа.

Выбираю кладку из кирпича М150 на растворе М100, для которой R=2,2 МПа (-5%, что допустимо).

Требуемый процент косвенного армирования из проволоки ø5Вр-1 с Rs=200 МПа

Параметры арматурной сетки можно определить по таблице. При расположении сеток через один ряд кладки, т.е. 7,5 см, необходима сетка 50/50/5/5.

4. Расчёт сечений простенка верхнего этажа. Нагрузки: от веса стены N3=(0,9·3+1,5·3)0,66·18·1,1=94кН; от веса совмещённой кровли N4=30·6,0=180 кН. Изгибающий момент от внецентренного приложения нагрузки

М=180(32-7)(4,2-0,3)/4,2=4180 кН·см.

Эксцентриситет приложения продольной силы N=94+180=274 кН

Коэффициент ω=1+15,3/(1,5·64)=1,16

Требуемое расчётное сопротивление сжатию кладки

R ≥ =0,032 кН/см 2 =0,32 МПа.

Так же рассчитывают другие простенки, несущие нагрузку от перекрытий. Можно сделать вывод, что вся кладка стен должна выполняться из кирпича М50 на растворе М25, кроме простенков с 1-го по 4-й этаж, на которые опираются ригели, выполняемые из кирпича М150 на растворе М100 с сетчатым армированием.

а) б) Рис. 3. Армирование простенка: а – вид сбоку; б – план; 1 – сварная сетка

5. Проверка кирпичной кладки на местное сжатие (смятие) под опорами ригелей. Максимальная опорная реакция ригеля Qа=215 кН. Ширина ригеля b=30 см. Глубина заделки ригеля в стену ар=38 см. Площадь смятия Аloc=bap=30·38=1140 см 2 .

Расчётная площадь сечения стены

Ak=(b+2h)ap=(30+2·51)38=6004 см 2 .

Коэффициент полноты треугольной эпюры давления μ=0,5.

ν=1,5-0,5μ=1,5-0,5·0,5=1,25.

Требуемое расчётное сопротивление сжатию кладки при Nloc=Qa=215 кН

RNloc/(γμνАloc)=215/(1,74·0,5·1,25·1140)=0,17 кН/см 2 =1,7 МПа

Следует кладку протенков из кирпича М150 на растворе М100 с сетчатым армированием (50/50/5/5) через один ряд кладки доводить до опор . ригелей (рис. 3).

Дата добавления: 2018-02-18 ; просмотров: 1742 ; Мы поможем в написании вашей работы!

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.008)

Расчет простенка кирпичной стены пример

(ДЛЯ НАЧИНАЮЩИХ ИНЖЕНЕРОВ)

  • > Предисловие
  • > 1. Математика. Некоторые сведения из элементарной математики
    • > 1.1 Простые дроби
    • > 1.2 Десятичные дроби
    • > 1.3 Степенные формулы
    • > 1.4 Степень и корни
    • > 1.5 Квадратные уравнения
    • > 1.6 Логарифмы
    • > 1.7 Вычисление элементов длины окружности
    • > 1.8 О радианном и градусном измерении углов
    • > 1.9 Обращение десятичной дроби в простую
    • > 1.10 Правила округления
    • > 1.11 Равнодействующая сил. Параллелограмм сил
    • > 1.12 Решение системы линейных уравнений
    • > 1.13 Среднее арифметическое и среднее квадратичное отклонение
    • > 1.14 Тригонометрические функции
    • > 1.15 Десятичная и двоичная системы исчисления
    • > Введение
    • > 2.1 Функциональная зависимость. Переменные величины
    • > 2.2 Понятие о пределе переменной
    • > 2.3 Функция и ее простейшие свойства. Приращение функции
    • > 2.4 Скорость изменения функции (подведение к понятию о производной)
    • > 2.5 Производная функция
    • > 2.6 Геометрическое изображение приращений аргумента и функции
    • > 2.7 Геометрический смысл производной. Уравнение пучка прямых
    • > 2.8 Формулы дифференцирования
    • > 2.9 Производная второго порядка
    • > 2.10 Изучении функций с помощью производных
    • > 2.11 Дифференциал
    • > 2.12 Геометрическое изображение дифференциала
    • > 2.13 Дифференциал второго порядка
    • > 2.14 Дифференциал. Некоторые размышления автора (для внеклассного чтения)
    • > 2.15 Интеграл
    • > 2.16 Основные свойства неопределенного интеграла
    • > 2.17 Основные формулы интегрирования
    • > 2.18 Определение постоянной интегрирования
    • > 2.19 Интегрирование способом подстановки
    • > 2.20 Определенный интеграл и его основные свойства
    • > 2.21 Геометрический смысл определенного интеграла
    • > 2.22 Кривизна кривой
    • > 2.23 Практические примеры прикладного использования производной и интеграла
    • > Введение
    • > 3.1 Основные положения
    • > 3.2 Растяжение и сжатие. Закон Гука
    • > 3.3 Поперечная деформация. Коэффициент Пуассона
    • > 3.4 Диаграмма растяжения и ее характерные точки
    • > 3.5 Работа деформации при растяжении
    • > 3.6 Твердость
    • > 3.7 Деформация за пределом упругости. Наклеп. Исытание на сжатие
    • > 3.8 Допускаемое напряжение
    • > 3.9 Сложное напряженное состояние
    • > 3.10 Деформация при растяжении (сжатии). Удельная работа деформации
    • > 3.11 Теории прочности
    • > 3.12 Расчет тонкостенных сосудов
    • > 3.13 Сдвиг. Напряжения при сдвиге
    • > 3.14 Допускаемое напряжение при сдвиге
    • > 3.15 Смятие
    • > 3.16 Моменты инерции плоских фигур. Статические моменты инерции
    • > 3.17 Напряжения вызванные изменением температуры
    • > 3.18 Изгиб прямолинейного бруса
    • > 3.19 Зависимость между поперечной силой и изгибающим моментом
    • > 3.20 Построение эпюр изгибающих моментов и поперечных сил
    • > Введение
    • > 4.1 Основные положения
    • > 4.2 Растяжение и сжатие. Закон Гука
    • > 4.3 Поперечная деформация. Коэффициент Пуассона
    • > 4.4 Диаграмма растяжения
    • > 4.5 Сложное напряженное состояние
    • > 4.6 Теории прочности
    • > 4.7 Моменты инерции плоских фигур. Статические моменты инерции
    • > 4.8 Сдвиг (срез). Смятие
    • > 4.9 Изгиб прямолинейного бруса
    • > 5.1 Нагрузка от веса снега
    • > 5.2 Нагрузки на опалубку от бетонной смеси
    • > 5.3 Упрощенный расчет на прогибы конструкций исходя из физиологических требований (или по-простому расчет на зыбкость)
    • > 6.1 Стали для стальных строительных конструкций
    • > 6.2 Соответствие наименования и марок стали
    • > 6.3 Расчет анкерных болтов
    • > 6.4 Маркировка болтов (1988 год)
    • > 6.5 Допуски и отклонения на монтаже металлоконструкций (плакат)
    • > 6.6 Некоторые правила при выполнении прерывистых сварных фланговых швов
    • > 6.7 Минимально допустимые температуры стали для выполнения сварки без предварительного подогрева
    • > 6.8 Зазоры между элементами для сварных соединений
    • > 6.9 Несущая способность профнастила покрытия (отдельные данные). Рекомендации по креплению
    • > 6.10 Соответствие марок и типов электродов для ручной сварки
    • > 6.11 Размещение болтов
    • > 6.12 Таблица допускаемых усилий на обычные болты
    • > 6.13 Таблица допускаемых усилий на сварные швы
    • > 6.14 Усилия в элементах ферм (ручной прикидочный расчет)
    • > 7.1 Упрощенный расчет сечения арматуры в изгибаемых элементах
    • > 7.2 Нагельный эффект в технологических (рабочих) швах монолитных перекрытий
    • > 7.3 Понятие о предварительно напряженном железобетоне
    • > 7.4 Основные положения по конструированию и армированию железобетонных балок
    • > 7.5 Основные положения по конструированию и армированию железобетонных плит
    • > 7.6 Основные положения по конструированию и армированию железобетонных колонн
    • > 7.7 Соотношение между марками бетона по прочности и классами бетона
    • > 7.8 Температурные деформации ЖБК (прикидочный расчет)
    • > 7.9 Размещение (шаг) арматуры на 1 п.м. сечения плиты
    • > 7.10 Варианты поддерживающих каркасов
    • > 7.11 Минимальный процент армирования железобетонных конструкций
    • > 7.12 Графики набора прочности бетоном
    • > 8.1 Основные характеристики грунтов
    • > 8.2 Учет взвешивающего действия воды
    • > 8.3 Прикидочный расчет давления грунта на подпорную стенку
    • > 8.4 Расстояние между контрфорсами в подпорных стенах
    • > 8.5 Три стадии работы грунта под нагрузкой
    • > 8.6 Сжимаемость грунтов. Модуль деформации. Неравномерность осадок
    • > 8.7 Основные понятия о расчете столбчатого и ленточного фундаментов
    • > 8.8 Основные положения по расчету одиночных свай
    • > 8.9 Основные положения по расчету куста свай (свайных ростверков)
    • > 8.10 Расчет массивных (кирпичных) подпорных стен
    • > 8.11 Кратко о коэффициенте постели
    • > 8.12 Нагрузка на подпорную стену (прикидочный расчет)
    • > 9.1 Расчет на опрокидывание кирпичных стен и столбов
    • > 9.2 Немного о прочности раствора
    • > 9.3 Расчет каменных стен многоэтажных зданий. Основные указания
    • > 9.4 Пример расчета простенка кирпичной стены многоэтажного здания
    • > 9.5 Предельные гибкости стен и столбов
    • > 9.6 Крепление кирпичных перегородок к стенам и потолку
    • > 9.7 Правила перевязки кирпичной кладки и ее прочность
    • > 9.8 Устройство ниш и борозд в кирпичных стенах (без расчетов)
    • > 9.9 ДК. Несущая способность нагельных и гвоздевых соединений
    • > Введение
    • > 10.1 ТТК – типовые технологические карты
      • > ТТК – бетонирование вертикальных конструкций
      • > ТТК – бетонирование горизонтальных конструкций
      • > ТТК – бетонирование монолитных конструкций при отрицательных температурах
      • > ТТК – арматурные работы (кратко)
      • > ТТК – армирование стен и перекрытий
      • > ТТК – монтаж металлоконструкций каркаса и ограждающих конструкций
      • > Введение
      • > 11.1 Основные виды строительного контроля
      • > 11.2 Небольшая информация из Градостроительного кодекса, которую желательно запомнить
      • > 11.3 Положения из СП 48.13330.2011 Организация строительства (ч.1)
      • > 11.3 Положения из СП 48.13330.2011 Организация строительства (ч.2)
      • > 11.3 Положения из СП 48.13330.2011 Организация строительства (ч.3)
      • > 11.4 Журналы работ
        • > 14.1.1 Общий журнал работ
        • > 11.4.2 Журнал входного учета получаемых материалов
        • > 11.4.3 Журнал бетонных работ
        • > 11.4.4 Журнал по уходу за бетоном в зимнее время
        • > 11.4.5 Журнал сварочных работ
        • > 11.4.6 Журнал регистрации инструктажа по ТБ
        • > 11.4.7 Журнал по монтажу строительных конструкций
        • > 11.4.8 Журнал замоноличивания монтажных стыков
        • > 11.4.9 Журнал антикоррозионной защиты сварных соединений
        • > 11.4.10 Журнал по окраске и антикоррозионной защите стальных конструкций
        • > 11.4.1 Журнал авторского надзора
        • > 11.4.2 Журнал контроля качества
        • > Акт на скрытые работы
        • > Пример акта на скрытые работы (с бухгалтерскими реквизитами)
        • > Акт освидетельствования ответственных конструкций
        • > Акт о передаче строительной площадки (вар.1)
        • > Акт о передаче строительной площадки и ИРД (вар.2)
        • > Акт освидетельствования геодезической разбивочной основы объекта
        • > Акт разбивки осей объекта на местности
        • > Акт передачи геодезических реперов
        • > Акт приемки подземной части здания (нулевого цикла)
        • > Акт приемки конструкций из монолитного бетона
        • > Акт приемки кровли
        • > Акт приемки гидроизоляции
        • > Акт промежуточной приемки ответственных конструкций
        • > Акт освидетельствования сетей инженерно-технического обеспечения
        • > Акт о передаче электрических шкафов
        • > Акт гидростатического испытания на герметичность
        • > Акт испытания трубопроводов на прочность и герметичность
        • > Акт о проведении гидравлического испытания напорного трубо провода
        • > Акт о проведении дезинфекции трубопроводов водоснабжения
        • > Акт о проведении промывки (продувки) трубопроводов
        • > Акт приемки системы отопления на эффект
        • > Акт приемки системы противопожарной защиты после комплексного опробования
        • > Акт индивидуального испытания оборудования
        • > Акт рабочей комиссии о приемке оборудования после индивидуального испытания
        • > Акт рабочей комиссии о приемке оборудования после комплексного опробования
        • > Акт о соответствии построенного объекта требованиям технических регламентов
        • > Перечень основных документов Госархстройнадзора предъявляемых Госкомиссии (39 пунктов)
        • > Перечень основных документов Госархстройнадзора предъявляемых Госкомиссии (56 пунктов)
        • > Градостроительный план земельного участка (ГПЗУ). Форма бланка
        • > СОКК – укладка бетонных смесей
        • > СОКК – бетонные работы
        • > СОКК – опалубочные работы
        • > СОКК – производство бетонных работ при отрицательных температурах
        • > СОКК – арматурные работы
        • > СОКК – устройство монолитных покрытий
        • > СОКК – монтаж сборных ЖБ колонн многоэтажных зданий
        • > СОКК – монтаж ЖБ колонн одноэтажных зданий
        • > СОКК – контроль прочности бетона в конструкциях
        • > СОКК – монтаж конструкций многоэтажных зданий
        • > СОКК – приемка железобетонных конструкций и частей сооружений
        • > СОКК – устройство монолитных покрытий и оснований
        • > СОКК – допуски при монтаже конструкций одноэтажных зданий
        • > СОКК – монтаж МК. Допускаемые отклонения (плакат)
        • > СОКК – сварка монтажных соединений стальных конструкций
        • > СОКК – окрасочные работы
        • > 12.1 Упрощенный расчет потребности объекта в теловой нагрузке
        • > 12.2 Наибольшее расстояние между средствами крепления трубопроводов (выписки из СНиП 3.05.01-85)
        • > 12.3 Уклон, с которым укладываются канализационные трубы
        • > 12.4 Защита наружных стен от сырости. Точка росы
        • > 12.5 Электроснабжение. Рекомендуемые установочные размеры розеток и выключателей
        • > 12.6 Правила установки ревизий и прочисток на канализационных сетях
        • > 13.1 Справочный лист конструктора строителя (1969)
        • > 13.2 Таблица значений тригонометрических функций (sin, cos, tg, ctg)
        • > 13.3 Отклонения на монтаже металлоконструкций (плакат)
        • > 13.4 Справочные данные по подбору состава бетона (из различных справочников)
        • > 13.5 Сроки службы зданий и их конструктивных элементов
        • > 13.6 Расстояние между температурно-усадочными швами (блоками)
        • > 14.1 СНиПы и СП
        • > 14.2 ГОСТы (по строительству)
        • > 14.3 Архитектура
        • > 14.4 Железобетонные конструкции
        • > 14.5 Металлические конструкции
        • > 14.6 Каменные конструкции
        • > 14.7 Деревянные конструкции
        • > 14.8 Основания и фундаменты
        • > 14.9 Нагрузки и воздействия
        • > 14.10 Отделочные работы
        • > 14.11 Проектирование объектов
        • > 14.12 Ремонт и реконструкция зданий
        • > 14.13 Строительные конструкции. Проектирование и расчет
        • > 14.14 Строительные материалы
        • > 14.15 Строительное производство. Технология
        • > 14.16 Инженерные коммуникации и сооружения
        • > 14.17 Типовые серии
        • > 14.18 Учебная литература
        • > 14.19 Разная литература
        • > 16.1 Как определить стоимость строительства по площади здания (с м2) ?
        • > 16.2 Проблемы с пароизоляцией пола над холодным техподпольем
        • > 16.3 Нужна ли сплошная обрешетка внизу на стропильной кровле ?
        • > 16.4 Просадка фундамента после откопки траншеи с одной стороны здания
        • > 16.5 Можно ли наносить финишную шпаклевку на “бетоноконтакт” ?
        • > 16.6 Почему разрушилась стена гаража ?
        • > 16.7 Пробита штроба в бетонной стене. Насколько это опасно?
        • > 16.8 Угол дома с тычковой кладкой
        • > 16.9 Какой процент износа бревенчатого дома
        • > 16.10 Полиэтиленовая пленка в качестве временной отмостки

        От Автора:

        «Книга инженера – строителя (для начинающих инженеров)» была создана мною при помощи «Конструктора сайтов Hostland.RU.», использовав при этом лишь небольшую часть возможностей конструктора: Заказать хостинг

        Расчёт и проектирование каменных конструкций для здания с разбивочной сеткой 5.6×5.8м

        2.1. Определение рсчётных усилий на простенок……………………..

        2.3 Усиление простенка стальной обоймой.………………………….

        3. Расчет колонны первого этажа

        3.1. Определение расчетных усилий на колонну………………………

        3.3 Усиление колонны стальной обоймой.………………………….

        В последние годы в строительстве резко возросла доля зданий из мелкоштучных материалов, в первую очередь кирпича, керамических камней и бетонных блоков.

        В составе элементов каменных зданий имеются конструкции, по которым мы получили навыки расчета и конструирования. К ним относится плиты и ригели, монолитные конструкции перекрытий, конструкции лестничных маршей, балконные плиты, колонны, кровельные несущие элементы, фундаменты мелкого и глубокого заложения и т.п.. В то же время, за рамками этих проектов остаются такие элементы, как несущие каменные стены, перемычки, столбы, стены подвалов, карнизы, определяющие прочность, жесткость здания в целом или его отдельных частей.

        Каменные здания представляют собой сложную пространственную систему, воспринимающую горизонтальные вертикальные нагрузки различной интенсивности. Их пространственный расчет представляет сложную задачу даже для современных вычислительных машин, не говоря о ручных расчетах. Поэтому в практических расчетах используют, как правило, разбивку здания на отдельные плоские элементы. Подсчет усилии в них производят, исходя из грузовых площадей. При определении напряжений от горизонтальных нагрузок здание разбивают на вертикальные столбы способные воспринимать эти нагрузки. Усилия в них распределяют пропорционально их изгибной и сдвиговой жесткости.

        1. Исходные данные

        Задание на проектирование по курсовому проекту №2, вариант №18

        Здание с разбивочной сеткой 5.6×5.8м.

        Ширина здания 16.8 м, длина 58м.

        Толщина наружной несущей стены h=640мм.

        Высота этажа Hst =3.3м.

        Высота стены подвала Нр=2.8м

        Постоянные расчетные нагрузки на:

        а) межэтажные перекрытия q1=4.26кПа

        б) чердачное перекрытие q2=5кПа

        Временная нормативная нагрузка на перекрытия:

        а) длительная =5 кПа.

        б) кратковременная =4 кПа.

        Вылет карниза первого типа составляет =1000мм., высота сечения δк=50мм.

        Марка кирпича для стен – М75, марка раствора для стен – 25.

        Марка кирпича для колонн – М100, марка раствора для колонн – 75.

        Место строительства – г. Владивосток.

        Угол внутреннего трения грунта φ=31 град.

        Класс бетона блоков стен подвала В10.

        Марка раствора швов кладки стены подвала – 50

        Расчетное сопротивление кладки стен – R=1.1 Мпа.

        Снеговая нагрузка расчётная рs=1.2кПа (II снеговой район)

        Нормативная ветровая нагрузка qw,n=0.48 кПа.

        Привязка наружных стен – 0 мм.

        2. Расчет простенка наружной стены первого этажа.

        2.1. Определение рсчётных усилий на простенок.

        Определим ширину грузового участка:

        где а – привязка стен;

        l – расстояние между разбивочными осями.

        Длина грузовой площади простенка:

        где lp– ширина простенка, принимается в зависимости от размеров окна и назначается, как правило, кратным размерам кирпича;

        lf – ширина оконных проемов.

        Рис.1. Схема определения грузовой площади простенка

        Грузовая площадь простенка:

        Так как грузовая площадь менее 9м2, то в соответствии с п.3.8 [2] коэффициент сочетания нагрузок от одного перекрытия ψА1=1.

        То же от четырёх перекрытий (при пятиэтажном здании):

        Подсчет усилия N1 на простенок от вышерасположенных этажей на уровне низа перекрытий первого этажа, ведем исходя из грузовой площади и действующих нагрузок на перекрытия, покрытия и кровлю:

        где ps – снеговая нагрузка.

        Рис.2. Схема передачи усилий с перекрытия на стены

        Подсчет усилий N2 от нагрузок перекрытия первого этажа производим по формуле:

        Учитывая, что длина опорной зоны плит на стене для кладки принимается 12 см, определим с:

        Эксцентриситет приложения силы N2:

        Усилия от собственного веса стены N3 определяется от веса кладки, штукатурки на стенах, веса оконного заполнения. Для подсчета усилия от веса кладки N3 проведем промежуточные расчеты.

        Площадь рассматриваемого участка стены: A=H*lq=17.3*2.32=40.136 м 2

        где H – высота стены до верха парапетного или карнизного участка.

        где hk2 – высота карнизного участка стен.

        где lf,hf – соответственно ширина и высота оконного проема.

        Площадь кладки: Sk=A-Af=40.136-12.255=27.881 м 2

        Объем кладки: Vk=Sk*h=27.881*0.64=17.84 м 3

        где γ- средняя плотность кладки

        Усилие от веса штукатурки N3,2 определяется по схеме. Определим площадь штукатурки, с учётом оштукатуривания откосов и верха проёма и площади занимаемого перекрытиями:

        где δf – ширина оконных блоков и четвертей; δf =0.25м

        δs – толщина штукатурки: δs=0.02м

        Усилие от веса оконного заполнения N3,3 определяется по формуле:

        где gf – вес 1 м 2 окон.

        Таким образом, суммарная продольная сила составит:

        Рис.3. Характер распределения усилий в сечениях простенка

        Усилия N определим с учетом уменьшения усилий от массы кладки, штукатурки и окон от сечения 3-3 к сечению 1-1

        где hf0=0.8м – высота подоконной части стены.

        Момент M1(1-1) от нагрузки с перекрытия в сечении 1-1 определяется:

        Момент от ветровой нагрузки при давлении ветра (qω):

        где , – нормативная ветровая нагрузка;

        c,k – коэффициенты, принимаемые по СНиП, в зависимости от ветрового района, направления действия ветра, формы поверхности, высоты здания и типа местности;

        γf=1.4 коэффициент надежности по ветровой нагрузке;

        l – расчетная высота простенка, равная расстоянию от пола до низа перекрытия.

        При отрицательном значении в сечении 1-1 и 3-3 и положительном в сечении 2-2:

        То же при противоположных знаках и другом значении с=0.6

        2.2. Расчет простенка.

        Расчет простенка первоначально проведем как каменного элемента по формуле: Nmg**R*Ac*

        Проверяем все три сечения, так как по высоте меняются значения коэффициента продольного изгиба φ. Если в сечении 1-1 и 3-3 следует принимать φ=1, то в сечении 2-2 оно равно расчетному значению. Коэффициент, учитывающий длительность действия нагрузки mg=1 во всех сечениях, т.к. h>30 см.

        Как рассчитать стены из кладки на устойчивость

        Чтобы выполнить расчет стены на устойчивость, нужно в первую очередь разобраться с их классификацией (см. СНиП II -22-81 «Каменные и армокаменные конструкции», а также пособие к СНиП) и понять, какие бывают виды стен:

        1. Несущие стены – это стены, на которые опираются плиты перекрытия, конструкции крыши и т.п. Толщина этих стен должна быть не менее 250 мм (для кирпичной кладки). Это самые ответственные стены в доме. Их нужно рассчитывать на прочность и устойчивость.

        2. Самонесущие стены – это стены, на которые ничто не опирается, но на них действует нагрузка от всех вышележащих этажей. По сути, в трехэтажном доме, например, такая стена будет высотой в три этажа; нагрузка на нее только от собственного веса кладки значительная, но при этом очень важен еще вопрос устойчивости такой стены – чем стена выше, тем больше риск ее деформаций.

        3. Ненесущие стены – это наружные стены, которые опираются на перекрытие (или на другие конструктивные элементы) и нагрузка на них приходится с высоты этажа только от собственного веса стены. Высота ненесущих стен должна быть не более 6 метров, иначе они переходят в категорию самонесущих.

        4. Перегородки – это внутренние стены высотой менее 6 метров, воспринимающие только нагрузку от собственного веса.

        Разберемся с вопросом устойчивоcти стен.

        Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.

        Теперь возьмем наихудший вариант: тонкую тетрадь большого формата и поставим на ребро – она не просто потеряет устойчивость, но еще и изогнется. Так и стена, если не будут соблюдены условия по соотношению толщины и высоты, начнет выгибаться из плоскости, а со временем – трещать и разрушаться.

        Что нужно, чтобы избежать такого явления? Нужно изучить п.п. 6.16. 6.20 СНиП II -22-81.

        Рассмотрим вопросы определения устойчивости стен на примерах.

        Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.

        Из таблицы 26 (п. 2) определяем группу кладки – III . Из таблиц ы 28 находим ? = 14. Т.к. перегородка не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 9,8.

        Находим коэффициенты k из таблиц ы 29:

        k 1 = 1,8 – для перегородки, не несущей нагрузки при ее толщине 10 см, и k 1 = 1,2 – для перегородки толщиной 25 см. По интерполяции находим для нашей перегородки толщиной 20 см k 1 = 1,4;

        k3 = 0,9 – для перегородки с проемами;

        Окончательно β = 1,26*9,8 = 12.3.

        Найдем отношение высоты перегородки к толщине: H / h = 3,5/0,2 = 17,5 > 12.3 – условие не выполняется, перегородку такой толщины при заданной геометрии делать нельзя.

        Каким способом можно решить эту проблему? Попробуем увеличить марку раствора до М10, тогда группа кладки станет II , соответственно β = 17, а с учетом коэффициентов β = 1,26*17*70% = 15 < 17,5 - этого оказалось недостаточно. Увеличим марку газобетона до М50, тогда группа кладки станет I , соответственно β = 20, а с учетом коэффициентов β = 1,26*20*70% = 17.6 >17,5 – условие выполняется. Также можно было не увеличивая марку газобетона, заложить в перегородке конструктивное армирование согласно п. 6.19. Тогда β увеличивается на 20% и устойчивость стены обеспечена.

        Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.

        Из таблицы 26 (п. 7) определяем группу кладки – I . Из таблиц ы 28 находим β = 22. Т.к. стена не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 15,4.

        Находим коэффициенты k из таблиц ы 29:

        k 1 = 1,2 – для стены, не несущей нагрузки при ее толщине 38 см;

        k2 = √А n / Ab = √1,37/2,28 = 0,78 – для стены с проемами, где Ab = 0,38*6 = 2,28 м 2 – площадь горизонтального сечения стены с учетом окон, А n = 0,38*(6-1,2*2) = 1,37 м 2 ;

        Окончательно β = 0,94*15,4 = 14,5.

        Найдем отношение высоты перегородки к толщине: H / h = 3/0,38 = 7,89 < 14,5 - условие выполняется.

        Необходимо также проверить условие, изложенное в п. 6.19:

        Еще полезные статьи:

        профили арматуру не заменят

        насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
        А какой фундамент – лента или плита? Какие грунты?

        жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой – как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры – тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще

        насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
        А какой фундамент – лента или плита? Какие грунты?

        Груны пока не известны, вероятнее всего будет чистое поле суглинки всякие, изначально думал плиту, но низковато выйдет, хочется по-выше, а ещё же придётся верхний плодородный слой снимать, поэтому склоняюсь к ребристому или даже коробчатому фундаменту. Несущей способности грунта много мне не надо – дом всё-таки решили в 1 этаж, да и керамзитобетон не очень тяжёлый, промерзание там не более 20 см (хотя по старым советским нормативам 80).

        Думаю снять верхний слой 20-30 см, выложить геотекстиль, засыпать песочком речным и разровнять с уплотнением. Затем легкая подготовительна я стяжка – для выравнивая (в неё вроде бы даже арматуру не делают, хотя не уверен), поверх гидроизоляция праймером
        а дальше вот уже диллема – даже если связать каркасы арматуры ширина 150-200мм х 400-600мм высоты и уложить их с шагом в метр, то надо ещё пустоты чем-то сформировать между этими каркасами и в идеале эти пустоты должны оказаться поверх арматуры (да ещё и с некоторым расстоянием от подготовки, но при этом сверху их тоже надо будет проармировать тонким слоем под 60-100мм стяжку) – думаю ППС плиты замонолитить в качестве пустот – теоретически можно будет такое залить в 1 заход с вибрированием.

        Т.е. как бы с виду плита 400-600мм с мощным армированием каждые 1000-1200мм объемная структура единая и легким в остальных местах, при этом внутри примерно 50-70% объёма будет пенопласт (в не нагруженных местах) – т.е. по расходу бетона и арматуры – вполне сравнимо с плитой 200мм, но + куча относительно дешового пенопласта и работы больше.

        Если как-то бы ещё заменить пенопласт на простой грунт/песок – будет ещё лучше, но тогда вместо легкой подготовки разумнее делать нечто более серьёзное с армированием и выносом арматуры в балки – в общем тут не хватает мне и теории и практического опыта.

        Вернёмся пока к стенам, тут вычитал ещё интересный вариант tilt-up
        на фундаменте отливается прямо стена с утелпением сразу (в утеплении есть углубления для армирования, т.е. слой бетона не везде одинаковый, как бы та же ребристая структура)

        я думаю заменить тяжёлый бетон 50-150 мм, на керамзитобетон заводской 150-250 мм 1000-1200кг/м3 – арматурный каркас там из 12й арматуры в прорези между утеплителем (шаг 1м в утолщениях стены), а по внутренней стене дополнительно кладочную сетку 6ку вроде с шагом 100мм

        потом это ставится уже краном (свариваются, скручиаются выносы арматуры) а стыки и углы монолитятся и утепляются отдельно (в стыках из плиты и потом в перекрытие отдельно арматура закладывается)

        немного смущает слабая связь стен с фундаментом (только по стыкам и углам), но при монолитном перекрытии – это вроде как достаточно жестко, можно в фундаменте и стеновых плитах сделать закладные и сварить до кучи

        Как Вам такая технология? Несущая стена получится 150мм с утолщениями до 250мм из керазитобетона M50 с умеренным армированием

        жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой – как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры – тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще

        зачем с этим бороться? нужно просто учитывать в расчете и при конструировании. Понимаете, керамзитобетон – достаточно хороший стеновой материал со своим списком достоинств и недостатков. Как и любые другие материалы. Вот если бы вы захотели использовать его для монолитного перекрытия, я бы вас отговаривала, потому что
        Цитата:

        а значит будут проблемы в растянутой зоне плиты и в местах анкеровки арматуры.

        Для стен же, тем более для одноэтажного дома, керамзитобетон вполне подходит. Конечно, нужно соблюсти все нормативные требования для лёгких бетонов.

        стяжка не армируется

        почитал СНИП по легким бетонам, там довольно интересные есть моменты.
        1. похоже можно делать керамзитобетон без мелкого наполнителя, я думаю использовать 10-20
        2. есть разные сорта керамзита по прочности, и требования для каждой марки керамзитобетона

        Класс бетона по прочности на сжатие – Минимальная марка заполнителя по прочности

        При этом я вижу что для фракции 10-20 есть варианты керамзита как П25 (дешового 250кг/м3), так и П50 – более дорогой и у него насыпная плотность уже 400кг/м3

        т.е. в принципе можно получить относительно дорогой конструкционно- теплоизоляционн ый D600 – D700 M100-B7.5 из которого даже относительно тонким слоем при качественном армировании можно хоть в 3-4 этажа лепить

        а можно получить дешовый D500 M50-B3.5 на 1-2 этажа хватит и такого за глаза, даже если будет пирог 120мм-100 ППС-80мм с армированием по 1 слою в обоих слоях керамбитобетона , связанных стеклоплатсиков ой арматурой между собой (как только это посчитать – не понятно, одиночной стены в 120мм мало, но учитывая что пенопласт будет не сплошным слоем, а с шагом в метр будут рёбра из чистого керамзитобетона с армированием, т.е. рёбра в 300мм толщиной по сути)
        я думаю прочности тут с большим запасом (скидка на качество изготовления самомесом, но планирую вибрировать поверхностным вибратором, плиты будут отливаться на фундаменте горизонтально с выносом арматуры для связи плит, и через неделю подниматься – размер плиты 1.1-1.2 х 2.4-3 м вес примерно 300-400кг всего, стыки плит будут заливаться отдельно тем же керамзитобетоном)

        Ещё есть мысль закупить б/у труб d50 и в плите в слое 120мм их замуровать с шагом 600мм с выносом, чтобы потом за них поднимать было удобно тельфером на полтонны думаю справиться, но и под них сделать дырки в фундаменте и поставить трубами в дырки + потом сверху будет перекрытие с армпоясом одновременно на всю 120мм часть стеновой плиты – эти трубы там замонолитить.

        Расчет нагрузки на кирпичную стену – пример определения несущей способности конструкции

        Проектирование и возведение сооружений из кирпича требует дополнительного расчета нагрузки. Несущая способность кирпичной кладки при неправильной закладке приводит к разрушению стены. Поэтому инженеры с максимальной точностью рассчитывают показатели. Для этого нужно знать марку кирпича по плотности, осуществляемую нагрузку, устойчивость, сопротивление сжатию и теплопередаче.

        Виды нагрузок на кирпичную стену

        Нагруженность элементов конструкции подразделяют на 2 вида:

        К постоянным относят удельную массу перегородок, перестенок, стен и других элементов, а также постоянное влияние подземных вод, горных пород и их гидростатика. Временные, как становится ясно из названия, это сбор нагрузок характерного типа, которые могут изменяться. К ним относят:

        • вес временно привезенного оборудования либо стационарных объектов;
        • разность перепадов давления в проложенных трубах здания;
        • нагрузки климатического характера влияния окружающей среды (снег, дождь, ветер).

        Если сооружение проектируется с малым количеством этажей, то строители могут пренебрегать данными касательно временных напряжений на здание, однако только при условии создания повышенного запаса прочности на этапах его строительства.

        От чего зависит нагруженность кирпичной кладки?

        Для проведения расчета первым делом необходимо определить все факторы, влияющие на прочность участка проектирования, а именно:

        • защитные возвышения по периметру кровли;
        • подоконники;
        • простенки;
        • участки над окнами с учетом полного веса всех составляющих стены;
        • допустимые нагрузки на плиту и между перекрытиями;
        • удельную массу настила;
        • для зимнего периода также учитывают вес снежного покрытия на крыше и влияние сильных порывов ветра.

        Для зданий более 2-х этажей проводят расчет для определения способности их сопротивляемости. С помощью формул высчитывают нагрузки от каждого отдельного этажа конструкции и точки давления. Высокие нагрузки образовываются в нижних частях кирпичного столба. Если условия по правильному соотношению величин толщины и высоты не будут выполнены, то с увеличением срока эксплуатации стена начнет выгибаться и может полностью разрушиться от перенапряжения.

        В строительной индустрии предусматривается толщина кладки из кирпича для несущих стен от 1,5 до 2,5 изделия. Но окончательное вычисление зависит от высотности объекта. Определяется устойчивость к нагрузкам непосредственно с помощью расчета, но в случае строительства 3 и более этажных зданий нужен тщательный анализ по формулам, которые учитывают сложение нагрузок от каждого этажа, угол приложения силы и возможные дополнительные напряжения.

        При планировании конструкции несущего типа материал стоит укладывать не менее, чем в 1,5 камня. Вернуться к оглавлению

        Пример расчета нагруженности кирпичной стены

        Чтобы разобраться в вопросе нагрузок несущих конструкций, можно изучить пример выполнения проекта, в котором не учитываются временные эксплуатационные нагрузки. Например, здание 4-х этажей с толщиной стен 64 см (Т), удельный вес с учетом всех элементов — кирпича, штукатурки и раствора составляет М=18 кН/м3. По ГОСТу 11214—86, выполнена закладка окон, их размеры по ширине 100—150 см (Ш) по высоте 100—130 см (В).

        Приложение веса на простенок от элементов, находящихся выше, согласно замерам, равен 0,64*1,42 м, а высота одного этажа (Вэт) 4200 мм. При этом сила давления на участок происходит под углом 45°. При слое штукатурки в 2 см определяют нагрузку от стен следующим алгоритмом: Нстен=(4Вэт+0,5(Вэт-В1)3—4Ш1*В1)(h+0,02)М. Подставив значения, получают 0, 447 МН. Определение требуемой нагруженной площади П=Вэт*В½-Ш/2. В этом случае значение равно 6 м. Нп =(30+3*215)*6 = 4,072МН. Получаемая нагрузка на кладку из кирпича от перекрытий 2-го этажа равняется: Н2=215*6 = 1,290МН, в том числе Н2l=(1,26+215*3)*6= 3,878МН. Удельный вес кирпичного простенка высчитывается по формуле: Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН.

        Необходимый показатель для данной конструкции можно вычислить, используя некоторые данные и формулы.

        Расчет несущей способности кирпичной стены выполняется по максимально загруженным простенкам нижнего этажа.

        При обследовании элемента выбирают части стены с минимальной шириной и толщиной. Чаще всего они расположенными в проемах дверей или окон. Если условие У >= Н на устойчивость стены при расчетах подтверждается, то проект выполнен верно и прочность конструктивных элементов достаточна. Расчет простенка для каждого этажа и суммирование значений показывают общую нагрузку здания и выполняются согласно СНиП II-22—81.

        Недостаточное сопротивление стены из кирпича

        Если при определении расчетного сопротивления данные устойчивости менее ее нагрузки, следует выполнять армирование стенок и перегородок. При упрочнении материала прирост показателей прочности составляет 40%. Далее следует заново пересчитать показатели устойчивости, учитывая усиление стальными элементами. Зная что У = 1,5, а Н = 1,113, рассчитывается коэффициент усиления, поделив значения, К = 1,348. Таким образом, увеличить прочностные показатели нужно на 34,8%. Проводя армирование железной обоймой, можно достичь нужных показателей прочности, если правильно выбрать марку кирпича, усиление, определить конструкцию фундамента и характеристики грунта под фундаментом.

        Расчет нагрузки на кирпичную стену; пример определения несущей способности конструкции

        Расчет нагрузки на кирпичную стену – пример определения несущей способности конструкции

        Проектирование и возведение сооружений из кирпича требует дополнительного расчета нагрузки. Несущая способность кирпичной кладки при неправильной закладке приводит к разрушению стены. Поэтому инженеры с максимальной точностью рассчитывают показатели. Для этого нужно знать марку кирпича по плотности, осуществляемую нагрузку, устойчивость, сопротивление сжатию и теплопередаче.

        Виды нагрузки

        По времени нагрузки бывают временные и постоянные.

        Постоянные:

        • вес элементов сооружений (вес ограждений, несущих и других конструкций);
        • давление грунтов и горных пород;
        • гидростатическое давление.

        Временные:

        • вес временных сооружений;
        • нагрузки от стационарных систем и оборудования;
        • давление в трубопроводах;
        • нагрузки от складируемых изделий и материалов;
        • климатические нагрузки (снеговые, гололёдные, ветровые и т.д.);
        • и многие другие.

        При анализе нагруженности конструкций обязательно следует учитывать суммарные эффекты. Ниже приведён пример подсчёта основных нагрузок на простенки первого этажа здания.

        Как рассчитать количество кирпича на стену – калькулятор, пример расчета для двухэтажного дома

        Прежде чем начинать возводить строительную конструкцию, своими руками или с привлечением профессиональных строителей, надо знать, сколько строительного материала необходимо. Кирпич, как древний строительный материал не утратил своей привлекательности до сих пор. А его сегодняшнее многообразие видов, типоразмеров, теплозащитных характеристик только еще больше придало ему популярности.

        Шпаргалка для приблизительных расчетов

        После решения о строительстве кирпичного сооружения, встает вопрос о его проекте, смете и конкретно, о необходимом количестве кирпича для кладки. Для того, чтобы знать, как рассчитать количество кирпича на стену дома, на все здание с его дверными и оконными проемами необходимо еще на этапе проекта опереться на требования к его теплозащитным характеристикам и несущим способностям.

        Документация

        Для более детального и профессионального подхода к вопросу количественного расчета строительных материалов, исходя из установленных норм и требований (теплотехнических, несущих), предлагается ознакомиться со следующими нормативными документами:

        • СНиП II-22-81 «Каменные и армокаменные конструкции».
        • СП 20.13330.2011 «Нагрузки и воздействия».
        • СП 13-102-2003 «Правила обследования несущих строительных конструкций зданий и сооружений».

        С помощью этих документов можно произвести расчет кирпичной стены на устойчивость. В этих документах предметно приводятся требования к детальным расчетам с учетом нагрузок, коэффициентов, марок растворов, мест применения (фундаменты, цоколи, стены несущие и облицовочные).

        Расчеты для строительства кирпичных конструкций

        Еще до разработки проекта кирпичного сооружения специалистами хозяину дома можно самому провести предварительные технико-экономические расчеты. Они помогут ориентировочно оценить такие оптимальные показатели, как: потребность строительного материала, трудоемкость, цена проекта.

        Понятно, что если вы для снижения трудозатрат, экономии времени, например, выбрали двойной силикатный кирпич М 150, то количество будет одно. Выбрав для такой же возводимой конструкции одинарный полнотелый кирпич М 150 или полуторный полнотелый кирпич, потребуется другое, большее число штук кладочного материала.

        Сравнительная таблица строительных материалов для стен

        Внимание! Строительный кирпич для строительства, надо выбирать не только по размерам, но с учетом климата региона (теплопроводность, морозостойкость, наличие пустот в теле кирпича), в каких конструкциях дома он используется и число этажей (прочностные показатели).

        Пример расчета для двухэтажного дома

        Посмотрим, как рассчитать количество кирпича на стену дома «на коленках», пользуясь простыми арифметическими действиями.

        Размеры дома для примера расчета

        Рассчитаем приблизительное число кладочного материала, которое нужно будет приобрести для двухэтажного дома, квадратного формата.

        Исходные данные для расчета (взяты для примера):

        1. Длина кирпичной стены одной стороны дома – 10 метров.
        2. Дом – два этажа.
        3. Высота этажа – 3 метра.
        4. Оконных проемов – 7.
        5. Дверных проемов – 1.
        6. Кладочный материал – стандартный одинарный строительный кирпич 250х120х65 (мм).
        7. Толщина кладочного шва, 10 – 14 (мм).

        Для примерного расчета для стены используем таблицу расхода кирпича на 1 м2, в зависимости от ее толщины (вида).

        Таблица: Количество расхода на разные виды кладки

        Единица измерения/вид кладки

        Толщина кладки, мм.

        Без учета растворных швов, шт.

        С учетом растворных швов, шт.

        Инструкция по вычислению расхода кирпичного материала:

        • Определяем периметр наружных стен приведенного формата дома, складывая все длины всех сторон дома. Мы для простоты привели квадратный формат строения, таким образом, 10 (м) х 4 = 40 (м).
        • Считаем высоту двух этажей: 3 (м) х 2 = 6 (м).
        • Определяем площадь поверхности внешних стен (путем умножения длины всей стены на высоту двух этажей): 40 (м) х 6 (м) = 240 (м2).
        • Выбираем вид кирпичной кладки, его ширину: два с половиной кирпича – 250 (мм) х 2 + 120 (мм) = 640 (мм).

        Ширина стены из стандартных одинарных кирпичей

        • С учетом швов, по таблице расхода одинарного кирпича (250х120х65) для данного вида кладки, определяем, что на 1м2 надо 255 штук рядового и облицовочного кирпича.
        • Высчитываем необходимый расход для всей поверхности двухэтажного здания: 255 штук х 240 (м2) = 61200 штук.
        • Из этого общего количества на лицевой ряд в полкирпича пойдет, с учетом таблицы: 51 штука х 240 (м2) = 12240 штук.
        • Соответственно рядового кирпича потребуется: 61200 – 12240 = 48960 (штук).

        Лицевой, облицовочный материал должен быть ровным, без сколов

        Внимание! К выбору фасадного, облицовочного материала подойдите внимательнее и ответственнее. Лучше весь фасадный кладочный материал брать в один раз (с страховым запасом), одной партии, с гладкими и однородными гранями (тем более цветной), с острыми и ровными, без сколов ребрами. Смотрите, чтобы вам для облицовки не дали номенклатуру изделий из разряда рядового.

        Таким образом, мы рассчитали необходимое количество, не учитывая проемы в стене для окон и двери. Чтобы их учесть, надо просто площадь окон, по-нашему примеру 7 штук, и двери, вычесть из общей площади всей стены двух этажей. А затем по таблице, так же, как рассчитывали выше, получить расход для этой площади.

        Расчет кирпичного простенка, любой перегородки, забирки фундамента выполняются аналогично. Но, можно, используя таблицу расхода на 1м3, рассчитать объем всей стены, а затем, разделив на объем одного изделия (выбранного типоразмера) тоже получить количество необходимого материала.

        Сейчас в сети, если не хочется считать на коленках, можно найти много строительных калькуляторов для подобных расчетов. Ответственные производители кирпичной продукции размещают их на своих корпоративных сайтах, для упрощения и облегчения выбора по своей линейке изделий.

        Фото: Revit Architecture – помощник для определения количества строительных изделий и раствора

        Для многих, наверняка будет интересным, рассмотреть пример расчета кирпичного простенка, других сооружений, с использованием программы Revit Architecture. Там же можно предварительно определиться с расходом раствора. С конкретным примером и пояснениями можно ознакомиться на видео в этой статье по ссылке:

        Расчеты и результаты

        Расчет на внецентренное сжатие, расчет на растяжение, расчет на смятие (местное сжатие), начальный модуля упругости, средний (секущий) модуля упругости, упругая характеристика армированной кладки, коэффициент продольного изгиба, коэффициент запаса прочности, относительные деформации кладки средние кратковременные, относительные деформации ползучести, расчетное армирование сечения, предельная перерезывающая сила, воспринимаемая армированной кладкой, предельный момент, воспринимаемый армированной кладкой, предельная сила сжатия, воспринимаемая армированной кладкой, предельная перерезывающая сила, воспринимаемая неармированной кладкой, предельный момент, воспринимаемый неармированной кладкой, предельная сила сжатия, воспринимаемая неармированной кладкой, проверка заданного усиления кирпичного простенка.

        Калькулятор расчета кирпича на кладку – инструкция

        Кирпич – это один из наиболее распространенных строительных блочных материалов, который используется для возведения дома. Всеобщее признание обусловлено во многом благодаря тому, что кирпичная кладка выдерживает очень большие нагрузки и подходит для строительства многоэтажных зданий, качественный материал обладает крайне высокой долговечностью и не разрушается в течение 100 лет, к тому же фасады из облицовочной керамики эстетически привлекательны и не требуют последующей отделки.

        Наш онлайн-калькулятор способен выполнить расчет кирпича на кладку стен дома с минимальными погрешностями, что позволяет сократить время на подготовительные работы, составить смету с расходом материалов, оценить бюджет и определиться с грузоподъемностью транспорта при доставке.

        Параметры кирпича

        • Тип кирпича. Выберите тип блока – керамический (красный), силикатный (белый).
        • Исполнение. Выберите исполнение кирпича – пустотелый, полнотелый.
        • Размер. Выберите размер блока – одинарный 250х120х65, полуторный (утолщенный) 250х120х88, двойной 250х120х140, евро 250х85х65, модульный 288х138х65.
        • Плотность. Подтвердите плотность блока или введите другое значение (от 1000 до 2000 кг/м 3 ).
        • Цена. Введите стоимость одного кирпича (при необходимости рассчитайте самостоятельно, если цена за куб).
        • Запас. Укажите запас материала на обрезки, бой и прочие брак. Рекомендуется указывать 3-5%.

        Параметры стен

        • Длина стен. Введите общую длину стен по внешнему периметру.
        • Высота стен. Введите предполагаемую высоту стен по углам.
        • Вариант кладки. Выберите толщину кладки – в 0.5, 1, 1.5, 2 блока.
        • Раствор. Укажите толщину кладочного раствора – 10, 15, 20 мм.
        • Кладочная сетка. Укажите необходимость использования кладочной сетки (опционально).

        Дополнительные конструкции

        Калькулятор кирпичной кладки позволяет исключить из расчета кирпичи, вместо которых планируется разместить определенные конструкции – окна, двери, гаражные ворота. Параметры для каждого дополнительного элемента указываются индивидуально. Можно указать несколько одноразмерных объектов.

        • Окна. Введите высоту и ширину окна, количество.
        • Двери. Введите высоту и ширину двери, количество.
        • Перемычки. Укажите толщину (высоту) перемычки и длину, количество.
        • Армопояс. Введите толщину (высоту) армирующего пояса, количество.

        Основные элементы кладки

        Кладка выполняется горизонтальными рядами, элементы укладываются на самую широкую грань – постель. В очень редких случаях (в основном при возведении перегородок) укладка производится на ложок – т.е. по схеме в четверть кирпича (65 мм).

        Представленная ниже схема поможет вам наглядно ознакомиться с наименованиями всех элементов кирпичной кладки:

        Важно знать! Ширина кладки должна быть кратной ½ кирпича.

        Также учитывайте, что кладочные размеры зависят не только от габаритов самого кирпича, но и от толщины горизонтальных и вертикальных растворных швов, которые на практике составляют в пределах 8-12 мм.

        Основные виды расшивки швов:

        Недостаточное сопротивление простенка

        Что делать, если расчетное сопротивление простенков давлению недостаточно? В этом случае необходимо укрепление стенки при помощи армирования. Ниже приведён пример анализа необходимой модернизации конструкции при недостаточном сопротивлении сжатию.

        Для удобства можно воспользоваться табличными данными.

        В нижней строке представлены показатели для стенки, армированной проволочной сеткой диаметра 3 мм, с ячейкой 3 см, класса В1. Армирование каждого третьего ряда.

        МаркаШирина, см
        кирпичраствор255177100116142168194220246272298
        Простая кладка1005061319252944526068768492
        Армированная кладка1005011233444517992107122136151165

        Прирост прочности составляет около 40 %. Обычно данное сопротивление сжатию оказывается достаточным. Лучше сделать подробный анализ, подсчитав изменение прочностных характеристик в соответствии с применяемым способом усиления конструкции.

        Ниже приведён пример подобного вычисления

        Пример расчета усиления простенков

        Исходные данные – см. предыдущий пример.

        • высота этажа — 3,3 м;
        • толщина стены– 0,640 м;
        • ширина кладки 1,300 м;
        • типовые характеристики кладки (тип кирпичей – глиняные кирпичи, изготовленные методом прессования, тип раствора – цементный с песком, марка кирпичей — 100, раствора — 50)

        Нагрузка пусть будет равной Н

        В этом случае условие У>=Н не выполняется (1,113 =Н выполняется. Сопротивление сжатию и прочность конструкции достаточны.

Ссылка на основную публикацию