Светодиодная лампа: устройство, принцип работы, виды

Устройство светодиодной лампы 220 Вольт

Появление светодиодных или LED-ламп способствовало началу нового этапа в индустрии освещения. Совсем недавно такие осветительные приборы представляли огромную редкость, а сейчас огромный ассортимент различных светодиодных светильников выставляют все крупные магазины. Светодиод, в отличие от обычной лампы накаливания, имеет свою схему запуска.

Она устанавливается в самой лампочке, между имитацией колбы и патроном. Поэтому это место делают непрозрачным. Добраться до платы с диодами не так и сложно, но некоторые усилия для разборки понадобятся. Хоть опыт и показывает, что большинство производителей используют для этого схожие модели пусковых устройств, небольшие различия все же остаются.

Друзья приветствую всех на сайте «Электрик в доме». Сегодня хочу предоставить вам обзор внутренностей светодиодных ламп, которые я заказывал на Алиэкспресс. Лампа состоит из 72 диодов. В ней используются SMD-cвeтoдиoды, известные также под названием Surface Mounting Device. Давайте приступим к разборке, думаю, вам также будет очень интересно.

снимаем верхнюю крышку

#5. Конденсатора , убирающего пульсацию по напряжению, подаваемому на кристаллы светодиодов с драйверной платы.

Схема и устройство светодиодной лампы на 220 В, основные элементы Подобная диодная сборка в любой схеме играет роль выпрямителя, преобразующего напряжение переменное питающее в постоянное, поступающее далее на светодиоды. Спрашивайте, я на связи!

Светодиодная лампа своими руками на 220 вольт. Схема и описание |

Принцип работы светодиодной лампы

Выпускаемые светодиодные лампочки на 220В могут отличаться между собой внешним дизайном, но принцип внутреннего устройства сохраняется для всех моделей. Излучение света в лампах выполняется светодиодами, число и размеры кристаллов которых может варьироваться в зависимости от мощности и возможностей охлаждения. Их цветовой спектр задается веществом, входящим в структуру каждого кристаллика.

Чтобы лучше рассеять излучаемый поток и защитить кристаллы от прикосновений, а также избежать их контакта с посторонними предметами, снаружи устанавливается рассеивающее защитное стекло (прозрачная пластмассовая колба). Поэтому своим внешним видом они очень напоминают традиционные источники света.

Для вкручивания лампочки в патрон их цоколи выполняют стандартных размеров Е14, Е27, Е40 и т.д. Это позволяет использовать Led лампы в домашней сети не прибегая к каким либо изменениям в электропроводке.

светодиодная лампа E27 разборка

Принцип работы драйвера в лампе на светодиодах

Экономим на замене: ремонт светодиодных ламп своими руками

Поняв принцип работы и схему драйвера, решение как починить светодиодную лампу на 220V уже не будет казаться сложным. Если говорить о качественных световых приборах, то неприятностей от них ждать не стоит. Они работают весь положенный срок и не тускнеют, хотя есть «болезни», которым подвержены и они. Как с ними справиться сейчас поговорим.

Схема светодиодной лампы на 220 вольт: устройство, принцип работы, драйвер, какая конструкция качественной и дешевой led-лампочки для электрического светильника Напряжение сначала подается на диодный мост, только потом на конденсатор, который шунтирован резистором, не принимающим участия в работе схемы. Спрашивайте, я на связи!

Ремонт светодиодных ламп своими руками: пошаговая инструкция

  1. Вытаскиваем клавишу из выключателя и отключаем подсветку. Метод прост, но индикация, увеличивающая стоимость выключателя теперь бесполезна.
  2. Разбираем люстру и на каждом патроне меняем фазный провод с нулевым местами. Способ сложнее, но он сохраняет функционал выключателя. В темноте его видно хорошо, и это плюс.

Ремонт светодиодной лампы на 220 В своими руками: нюансы производства работ

Перед тем, как отремонтировать светодиодную лампу своими руками, обратите внимание на некоторые детали, требующие меньшего количество трудозатрат. Проверка патрона и напряжения в нем – первое, что стоит сделать.

Важно! Ремонт ЛЕД-ламп требует наличия мультиметра – без него не получится прозвонить элементы драйвера. Так же потребуется паяльная станция.

Так выглядит паяльная станция. Стоимость ее довольно высока

Так выглядит паяльная станция. Стоимость ее довольно высока

Но перед тем, как выполнить ремонт светодиодных прожекторов, люстр или ламп нужно определить причину выхода из строя.

Как разобрать светодиодную лампочку

Одна из проблем, с которой сталкивается начинающий домашний мастер – как разобрать светодиодную лампочку. Для этого понадобится шило, растворитель и шприц с иглой. Рассеиватель LED-лампы приклеен к корпусу герметиком, который нужно удалить. Проводя аккуратно вдоль кромки рассеивателя шилом, шприцем вводим растворитель. Через 2÷3 минуты, легко покручивая, рассеиватель снимается.

Проверка светодиодной лампочки в разобранном состоянии. Не стоит так делать – это опасно

Некоторые световые приборы изготовлены без проклейки герметиком. В этом случае достаточно провернуть рассеиватель и снять его с корпуса.

Выявляем причину выхода из строя светодиодной лампочки

Разобрав осветительный прибор, обратите внимание на LED-элементы. Часто сгоревший определяется визуально: на нем имеются подпалины или черные точки. Тогда меняем неисправную деталь и проверяем работоспособность. Подробно о замене мы расскажем в пошаговой инструкции.

Светодиод можно прозвонить мультиметром не выпаивая из печатной платы

Замену конденсаторов и сопротивлений, в отличие от светодиодов, часто выполняют обычным паяльником. При этом следует соблюдать осторожность, не перегревать ближайшие контакты и элементы.

Замена светодиодов лампочки: насколько это сложно

При наличии паяльной станции или фена работа эта проста. Паяльником работать сложнее, но тоже возможно.

Полезно знать! Если под рукой нет рабочих LED-элементов можно установить перемычку вместо сгоревшего. Долго такая лампа не проработает, но некоторое время выиграть удастся. Однако такой ремонт производится только если количество элементов более шести. В противном случае день – это максимум работы ремонтного изделия.

Читайте также:
Оригами лилия: мк цветов со схемой сборки и видео

Описание источника питания на 220 вольт для самодельной светодиодной лампы

Электросхема довольно проста, и не требует наладки. Особенностью данной лампы служит использование светодиодов с большим углом излучения, в результате чего создается ровный и яркий свет. В свою очередь к плюсам этой лампы возможно отнести очень небольшое энергопотребление (около 2 Вт) и повышенный КПД.

Главным элементом электрической схемы являются ультраяркие светодиоды (25 штук) белого спектра излучения. В роли HL1 — HL25 лучше применить светодиоды с углом излучения 160 градусов, например, марки 5WW4SC. Их возможно поменять на другие светодиоды с прямым напряжением от 3,2 до 3,7 вольт и током потребления около 20 мА.

Светодиоды запитаны от бестрансформаторного модуля питания, который состоит из гасящего конденсатора С1, резистора R1, выпрямительного моста на диодах VD1…VD4, сглаживающей емкости С2 и ограничительного сопротивления R2.

Сетевое напряжение 220 вольт гасится цепью элементов R1, С1, R2. Емкость С1 должна быть на напряжение не менее 250 В. Затем пониженное напряжение идет на выпрямительный мост, и дальше через емкостный фильтр С2 напряжение поступает на последовательно соединенные светодиоды HL1 — HL25. При использовании в схеме 37-и светодиодов можно убрать сопротивление R2.

В данной схеме предусмотрена возможность защиты светодиодов от скачка повышенного напряжения 220 вольт. Она состоит из предохранителя на 80 мА и варистора (TVR05361 или FNR05361). При увеличении сетевого напряжения сопротивление варистора резко падает, что приводит к перегоранию предохранителя.

Принципиальная Схема Светодиодной Лампы на 220 Вольт Принцип работы

Светодиодные лампы E27 своими руками — Форум Сервер Дома Например, в детских комнатах может гореть всю ночь свет, по причине того, что ребенок боится спать в темноте, или постоянного освещения требует лестница и т. Спрашивайте, я на связи!

Как работает светодиодная лампа?

На сегодняшний день модели диодной лампы на 220 В начали стремительно заменять стандартные лампы накаливания и их люминесцентный аналог. Хоть и стоят они очень дорого, но их технические параметры значительно превосходят стремительно устаревающие модели. Для понимания того, как они работают, необходимо знать устройство светодиодной лампы.

Конструкция светодиодной лампы достаточно сложна, в систему включены элементы, в наличии которых ранее не было необходимости. В данном материале поговорим об устройстве различных видов светодиодных ламп, из каких деталей они состоят, для чего нужна каждая из этих деталей, что такое светодиодный драйвер и что он стабилизирует, как выглядит схема 220 В. Знание строения такой лампочки полезно для общего образования и очень поможет в ремонте поврежденных по каким-либо причинам единиц.

Светодиод

Уже из названия понятно, что главным рабочим элементом устройства светодиодных ламп на 220 В является светодиод. Именно его классификация в большей мере является решающей в определении видов лампочек.

Светодиод является полупроводниковым кристаллическим элементом, который интенсивно выделяет свет при прохождении через него электрического тока. Разные цвета получаются путем изменения состава кристалла. Он наращивается на специальную площадку, которая имеет контакты для подключения проводов. Изначально кристалл имеет синий цвет, без покрытия испускает соответствующее свечение. Для защиты от внешних факторов на него в светодиодной лампе наносится желтое твердое покрытие, при прохождении синего света сквозь него получается обычный белый свет.

Один из этапов выращивания светодиодов

Один из этапов выращивания светодиодов

Существует четыре основных технологии сборки чипа, которые и определяют классификацию используемых в лампочках светодиодов.

  • SMD-технология – самая распространенная в быту. Кристалл размещается на поверхности светового прибора. Это позволяет сильно уменьшить его размеры, увеличить плотность расположения для большей яркости, при этом он имеет улучшенный теплоотвод. Используется практически во всех лампочках, которые вы видите в магазинах.
  • DIP – световой элемент состоит из одного мощного кристалла, сверху на который прикреплена линза. Это второй по распространенности тип светодиода, благодаря концентрированию светового луча в одном направлении используется для подсветки на витринах и раскладках, а также в вывесках и прочих декоративных элементах.
  • Пиранья – любимчики автомобильной промышленности. В отличие от DIP, где присутствует только два контакта, здесь их четыре, поэтому гораздо легче подключаться к разным вольтовым элементам. Это значительно повышает уровень теплоотвода, расширяет сферу применения, монтаж получается более надежным и долговечным.
  • COB-технология – продвинутая схема подключения светодиодных кристаллов, самый защищенный от перегрева и окисления вариант. Здесь чип впаивается прямо в несущую плату. Благодаря самому продуманному теплоотводу достигается наибольшая яркость свечения, каким бы ни было напряжение. Но и минус присутствует значительный – если такой светодиод все-таки сгорит, его придется менять вместе со всей платой – в домашних условиях даже с неплохим опытом и оборудованием перепаять его будет очень сложно.

Главные враги светодиодов любого типа – перегрев и деградация

Светодиоды имеют весомый недостаток – они очень маленькие. И даже при колоссальном соотношении потребляемого тока и светоотдачи их придется использовать как минимум в количестве нескольких штук рядом, для того чтобы добиться необходимой яркости. Близкое расположение кристаллов друг к другу сильно влияет на их теплоотвод, они перегреваются и выгорают один за другим. LCD-диоды лишены такой проблемы.

Читайте также:
Очистка и дезинфекция воздуховодов системы вентиляции

Деградация светодиодов может быть вызвана как перегревом, так и длительным сроком эксплуатации даже с отличным теплоотводом. Со временем они начинают тускнеть при потреблении все того же электричества (при воздействии высоких температур это происходит быстрее). Качественные лампочки спустя несколько лет регулярного использования теряют до 30% яркости, у безымянных «китайцев» этот параметр может доходить до 60%.

Примерный график деградации

Примерный график деградации

Устройство светодиодной лампы

Каким бы важным элементом ни являлся светодиод, для его бесперебойной и максимально эффективной работы необходим ряд вспомогательных устройств, которые, будучи собранными воедино, образуют лампочку. Классическая электрическая схема светодиодной лампы имеет строение, приведенное на схеме ниже. Устройство светодиодного светильника аналогично, просто форма и расположение деталей другая.

Устройство обычной светодиодной лампы

Устройство обычной светодиодной лампы

Теперь устройство светодиодной лампы на 220 вольт разберем на каждый рабочий элемент отдельно.

  • Начнем с цоколя – на картинке он не указан, однако именно с него начинается схема питания каждой лампочки. Это та самая резьба, с помощью которой источник света вкручивается в патрон. В самом низу лампочки видим зеленый участок – там расположены контакты, которые проводят в нее питание – электрический ток при соединении с контактами в патроне. Бывает несколько различных модификаций, на картинке представлен вариант Е27.
  • Радиатор – в отличие от других обязательных элементов присутствует не в каждой модели. Он выполняется из легкого металлического сплава, играет роль рассеивателя тепла – о вреде перегрева мы говорили выше. Обычно такой деталью оборудуются лампы с мощными светодиодами – свыше 25 ватт суммарной мощности. Все промышленные экземпляры обязательно имеют хороший радиатор в основании.
  • Внутри цоколя обычно расположен «мозг» – драйвер LED-ламп. Он предназначен для регулирования электрического тока, который подается на светодиоды из центральной сети. Светодиодный драйвер сглаживает пульсации переменного тока, выпрямляя его специально для правильной работы кристаллов (а светодиоды работают правильно только при постоянном напряжении, при переменном токе они быстро сгорают из-за обратных пульсаций). Регулируя ток, драйвер обеспечивает большой диапазон работы при различных напряжениях (обычно это 170–260 вольт, зависит от назначения и производителя светового элемента). При низком напряжении лампочка просто не светит, т. к. ей не хватает мощности для запуска, в пределах диапазона загорается, а при избыточном токе электрические драйверы уберегут светодиоды от выгорания, также выключив их. Дополнительно схема драйверов для светодиодных ламп позволяет регулировать теплоотвод – лампочка может выключаться, перегревшись. Благодаря ему, резкие перепады напряжения тоже не страшны нежной и хрупкой структуре кристаллов. Примеры – BP2832A, BP3122 или BP2831A. Подбор стабилизатора (он же диодный мост) для LED-лампочек собственного изготовления выполняется исходя из параметров сети.
  • Светодиоды располагаются на монтажной плате, она выполняется из легкого металла, также играет роль теплоотвода (ответ на вопрос, куда же девается избыток температуры в моделях, где нет радиатора). Качество ее изготовления также сильно влияет на срок работоспособности кристаллов. В зависимости от технологии изготовления LED-лампочки имеют значительный диапазон цветовых температур (от 2 700 К, как у лампы накаливания, до 10 000 К и более, вплоть до глубокого синего цвета). Напряжение в сети играет важную роль в эффективности и стабильности схемотехники. Светодиодные лампы для дома могут комплектоваться несколькими типами светодиодов, например – SM7307 и 5131, в количестве от 6 до 18 шт. и более. На тип светильников влияет напряжение, количество необходимых вольт.
  • Вишенка на торте важности элементов в лампе – светодиоды. Конкретно в вышеупомянутом примере представлены модели, изготовленные по SMD-технологии. Их количество, размер и плотность установки напрямую влияют на яркость лампочки и суммарную мощность. В ярких лампочках 2–3 слабеньких отдельных светодиода заменяются одним большим кристаллом.
  • Совокупность монтажной платы и светодиодов образует светодиодный модуль. Его форма и расположение определяют роль самой лампочки – угол рассеивания и качество распространения света. Такая лампа, как на картинке, нашла применение в быту – на кухнях, в гостиных, там, где нужно много рассеянного света. Замена этого модуля на светодиод, выполненный по технологии DIP, сделает из такой лампочки точечный светильник – ей место либо в декоративном освещении, либо в светильниках с несколькими лампами.
  • Рассеиватель – обычно пластиковый, в фирменных лампочках – из тонкого матового стекла. Благодаря тому, что его форма напоминает уже знакомые нам лампы накаливания, светодиодные экземпляры ставятся практически в любой светильник, сложностей с интеграцией в быт не возникает. Материал играет существенную роль в эффективности свечения, даже если внутри установлены качественные, мощные светодиоды по всем правилам технологии, рассеиватель из дешевого пластика заберет около 20% светового потока. При покупке лампочек для помещений, в которых важна яркость, отдавайте предпочтение моделям с хорошим пластиком или стеклом. Матовость присутствует везде – это делает свет мягким, равномерно его рассеивает, поток не бьет по глазам, а в выключенном состоянии лампа выглядит благородно, начинки не видно (кроме вышеуказанных декоративных моделей с нитевидными светодиодами, это их фишка).

Тип светодиодов, которые используются для конкретной лампочки, очень важен, если вы решите починить ее самостоятельно в случае перегорания. Если светодиоды установлены таким образом, что их можно выпаять и поставить новые, то ремонт ламп происходит очень просто. Достаточно иметь паяльник с тонким наконечником, прибор для определения поврежденных контактов и новый, исправный источник света. В случае если светодиод впаян в плату целиком, даже имея соответствующий опыт, перепаять его в домашних условиях будет очень сложно. Можно купить новую плату, однако ее стоимость является практически равной стоимости новой лампы. Не нужно забывать, конечно, и о гарантии – если она все еще действует, просто замените лампочку в том магазине, где вы ее покупали.

Читайте также:
Сифон для биде: описание с фото, отзывы, советы

Виды драйверов

Помимо кристаллов самым сложным по структуре элементом в лампе является драйвер. Самая простая схема светодиодного драйвера содержит один или пару гасящих резисторов. В совокупности с диодами обратного направления тока, соединенными встречно-параллельно, резисторы нейтрализуют вредное действие переменного тока, и схема включения работает грамотно.

Схема простейшего драйвера

Схема простейшего драйвера

Такая схема дросселя светодиодной лампы на 220 В чаще всего используется, если изготавливается самодельный драйвер. На производстве принято использовать более сложные принципиальные схемы драйверов для светодиодов от сетей 220 В, которые имеют хороший амортизационный запас и зависят от типа приборов, устанавливающихся внутрь.

Различные схемы драйверов

Различные схемы драйверов

Как уже говорилось выше, драйвер для светодиодной лампы выполняет выпрямление тока с последующей его подачей на светодиоды. Это происходит в три шага:

  • Светодиодный драйвер преобразовывает переменный ток из сети 220 В в пульсирующий.
  • Выравнивает пульсирующий ток до постоянного.
  • Меняет ток до 12 вольт с последующей подачей на кристаллы.

Заключение

Сначала схема светодиодной лампы на 220 вольт может показаться очень сложной. Однако, разобравшись в назначении каждого элемента, не сложно понять их роль. Использование качественных материалов и грамотной технологии производства обеспечивают высокий уровень надежности светодиодных ламп. Соблюдение правил эксплуатации, рекомендованных производителем, гарантирует, что светодиодная лампа надежно прослужит нам долгие годы. Соотношение яркости и экономичности позволит окупить стоимость хорошей модели лампы в ближайшие годы, а светодиодный драйвер убережет ее от перепадов в электросети. Если свет часто пропадает или наблюдаются нестабильное напряжение – вам подойдет аккумуляторная электросхема (лампочки «Космос», их применение оправдано в местах, где стабильно питаться от сети не получается). Глядя на вышеуказанные схемы, можно легко собрать лампу 220 В своими руками.

Как устроена светодиодная лампа

С развитием электротехники традиционная лампа накаливания перестает быть единственным вариантом для освещения жилья. На смену ей пришли сначала люминесцентные, а затем и светодиодные (LED) источники света. Светодиодные лампы – энергоэффективные, яркие, безопасные для окружающей среды. Но их устройство заметно сложнее. В статье будет рассмотрено устройство светодиодной лампы, ее плюсы и минусы.

Принцип работы и устройство ламп.

Конструкция LED лампы.

Светодиодный источник света состоит из нескольких элементов, соединенных в одном корпусе. Это цоколь, драйвер, радиатор, светодиод и светорассеивающая колба.

  • Цоколь – элемент, который вкручивается в патрон люстры или другого светильника. Чаще всего для бытового применения выпускают винтовой цоколь типа Е27 и Е14. Он изготовлен из латуни с никелевым антикоррозийным покрытием. Для других нужд выпускаются источники света со штырьковым цоколем.
  • Драйвер – элемент, который стабилизирует поступающее напряжение, преобразуя переменный ток в постоянный. Также он обеспечивает питание светодиода. Драйвер состоит из микросхем, импульсного трансформатора, конденсаторов. В недорогих LED изделиях драйвер может отсутствовать. Вместо него применятся простой блок питания, не обеспечивающий стабилизации тока и напряжения. Также драйвер не устанавливают в миниатюрных лампочках из-за нехватки места внутри корпуса.
  • Радиатор – элемент, который отводит тепло от светодиодов и обеспечивает для них оптимальный температурный режим работы. Обычно он составляет видимую часть корпуса осветительного прибора. Радиатор может изготавливаться из различных материалов: от дорогой керамики до дешевого пластика. Алюминиевые и композитные материалы занимают среднюю нишу: они достаточно бюджетны и качественно отводят тепло.
  • Рассеиватель – прозрачный «колпак», который помогает распределять свет в пространстве. Изготавливается в виде полусферы для рассеивания пучков света под широким углом. В качестве материала применяют поликарбонат или пластик. Кроме этого рассеиватель предотвращает попадание внутрь корпуса пыли и влаги. Для смягчения резкости света и уменьшения раздражающего влияния на глаза этот элемент изнутри покрывают люминофором. При этом достигается цветовая температура, аналогичная естественному освещению.
  • Светодиоды – главный рабочий элемент лампы. За счет работы диода и появляется свечение.

Принцип работы светодиодных ламп основан на физических процессах в полупроводниках. Свечение появляется после прохождения электрического тока через границу соприкосновения двух полупроводников (n и p), в одном из которых должны преобладать отрицательно заряженные электроны, а в другом – положительно заряженные ионы. Стоит отметить, что данные материалы пропускают ток только в одну сторону. При его прохождении в носители заряда осуществляют рекомбинацию – электроны переходят на другой энергетический уровень. В результате появляется видимое глазу световое излучение. Кроме свечения происходит еще и выделение тепла, которое отводится от светодиода при помощи радиатора.

Схема появления оптического излучения в LED-элементе.

На заре появления светодиоды могли испускать только определенную световую волну: зеленую, красную или желтую. Поэтому LED-элементы встраивались в электрические схемы в виде индикаторов. В процессе развития микроэлектроники были найдены материалы, позволяющие получить световую волну широкого спектра. Однако полностью эта проблема не решена: в свечении светодиодных ламп преобладает или синяя длина волны или красная с желтым. По этой причине они и делятся на холодные и теплые соответственно.

Читайте также:
Розетки в пол – назначение, виды, правила монтажа, обзор розеток legrand

Виды и типы светодиодных ламп.

Четкая классификация у светодиодных ламп отсутствует: изделия производятся слишком разных форм, цветов и конфигураций.

По способу применения:

  1. Источники света общего назначения для освещения квартир и офисов. Характеризуются углом рассеивания от 20 0 до 360 0 .
  2. Изделия направленного света. Такие лампочки называют спотами. Они используются для создания подсветок или выделения интерьерных зон в комнате.
  3. Изделия линейного типа, схожие с привычными люминесцентными лампами. Изготавливаются в виде трубок. Применяются в технических помещениях, офисах, залах магазинов и в других пространствах, где важна пожарная безопасность. Создают яркую, красивую подсветку, которая подчеркнет необходимые детали.

По назначению светодиодные лампы делятся на:

  1. Изделия для уличного применения. Изготавливаются в пыле- и влагозащищенном корпусе.
  2. Изделия для производственных целей, коммунальных служб. Дополняются антивандальным прочным корпусом. Изготавливаются с особыми требованиями к характеристикам освещения: стабильность, срок службы, условия эксплуатации.
  3. Бытовые лампы. Характеризуются невысокой мощностью, стильным дизайном, электро- и пожаробезопасностью, качеством светового потока (индекс цветопередачи, коэффициент пульсации и др.).

Исходя из потребляемого напряжения тоже выделяют три вида ламп:

  1. С питанием 4 В. Маломощные светодиоды, которые потребляют от одного до 4,5 В. Излучают свет разных длин волн от инфракрасного до ультрафиолетового.
  2. С питанием 12 В. Такое напряжение безопасно для человека, поэтому эти источника света подходят для помещений с повышенной влажностью. Часто выпускаются со штырьковыми цоколями, что усложняет процесс подключения. Дополнительная трудность может быть в необходимости специального блока питания, который снизит напряжение сети до 12 В. Удобны для использования автолюбителям и туристам: они могут организовать освещение от аккумулятора.
  3. С питанием 220 В. Самый распространенный вид. Широко применяются для бытовых нужд.

Типы цоколей.

Чтобы LED источники света подходили к уже применяемой схеме электроснабжения домов, их оснащают винтовыми цоколями. В качестве альтернативы светильникам галогенного типа выпускают лампы со штырьковыми цоколями. Основные типы представлены в таблице.

Самый распространенный винтовой тип для бытовых источников света.

Винтовой цоколь для маломощных ламп.

Винтовой цоколь для мощных источников света ( в основном уличных).

Штырьковые контакты для маленьких лампочек.

Штырьковый контакт для мебельных и потолочных источников света.

Аналогично GU5.3, но расстояние между контактами составляет 10 мм.

Штырьковый контакт для плоских светильников.

Контакт, аналогичный люминесцентным трубчатым лампам.

Технические характеристики и маркировка светодиодных ламп.

Выпуском светодиодных источников света занимается множество мировых и российских компаний: OSRAM, Gauss, ASD, Philips, Navigator, ЭРА и другие. О самых популярных из них можно прочитать в статье «Рейтинг светодиодных ламп 2019 года».

Перед покупкой LED лампы стоит внимательно изучить технические ее свойства, указанные на упаковке. Их довольно много. Чтобы не запутаться, рассмотрим их подробнее.

Пример маркировки технических свойств на упаковках.

Мощность (измеряется в Вт). Показывает, сколько электричества потребляет осветительный прибор. По этому параметру светодиодные источники света на порядок превосходят лампы накаливания. На упаковке указывается фактическая и эквивалентная мощность. Лампа на рисунке фактически потребляет 9 Вт. Она заменяет лампу накаливания мощностью 75 Вт. За счет этого достигается экономия электроэнергии и семейного бюджета.

Мощность промышленных и уличных светодиодных источников света может доходить до 1000 Вт. Но для бытовых нужд фактической мощности от 2 до 20Вт вполне хватит. Для удобства пользователей составлены специальные таблицы с эквивалентными мощностями.

Мощность светодиодных, ВтМощность люминесцентных, ВтМощность ламп накаливания, Вт
1315
3735
51150
71570
91990
1225120
1531150
1836180

Световой поток (измеряется в Лм). Этим параметром описывается яркость. Чтобы было понятнее можно представить свет от ламп накаливания мощностью 40, 60 и 100 Вт. Их световой поток аналогичен яркости LED-элементов в 400, 600 и 1000 Лм соответственно. Для удобства стоит запомнить последнюю пару цифр и ориентироваться по ним: традиционная 100 ваттная лампа «Ильича» имеет яркость в 1000 Лм.

Срок службы в часах. Количество часов, которое проработает источник света. По этому показателю LED-элементы лидируют: в среднем они работают в 25 раз больше, чем традиционные лампы.

Однако стоит иметь в виду, что яркость лампы напрямую зависит от количества выработанных часов. Чем старше лампа, тем тусклее она светит. В мире принят стандарт L70. И если на упаковке написано, что световой поток по L70 равен 50000 часов, то означает, что по истечении времени яркость составит всего 70% от первоначальной.

Некоторые производители указывают большой срок службы, но приписывают, что гарантируют его при определенных условиях работы: например, если лампа будет работать в сутки не более трех часов. Это тоже прописывается на упаковке, но как правило сбоку.

Тип цоколя. На рисунке указан тип цоколя Е14 − для небольших светильников.

Цветовая температура (измеряется в К). Характеризует теплоту света. Из-за конструктивных особенностей светодиоды способны давать световой поток разной теплоты: с преобладанием синего спектра или красного с желтым.

Читайте также:
Подводка воды к унитазу разными способами своими руками: Обзор + Видео

Цветовая температура имеет широкий диапазон:

  • До 2800 К – теплый желтый свет с красным оттенком (аналогичен лампам накаливания небольшой мощности);
  • 3000 К – теплый белый свет с желтым оттенком (аналог – галогенные источники света);
  • 3500 К – естественный нейтральный белый свет (аналог – люминесцентные лампы; цвет не искажает цветовосприятие, глаза не устают);
  • 4000 К – холодный белый (хорошо освещает пространство, подходит для кухни, офисов, кабинетов);
  • 5000-6000 К – дневной свет (очень яркий, подходит только для производственных помещений);
  • 6500 К и выше – холодный дневной с голубоватым оттенком (применяется в больницах, технических помещениях, при фото- и видеосъемке).

Цветовая температура led-ламп

При подборе цветовой температуры для освещения жилого помещения стоит отметить, что чем она ниже, тем более способствует расслаблению и спокойствию. Более холодные цвета бодрят и настраивают на рабочую обстановку.

Индекс цветопередачи. Определяет, будет ли искажение цветов в помещении. Обозначается латинскими буквами CRI или Ra и цифрами от 1 до 100. Чем ниже его значение, тем сильнее искажение цветов. При индексе 100 искажения не будет совсем. Для использования в доме советуют применять лампы с индексом цветопередачи не менее 80-90.

Габаритные размеры (указываются в мм). Размеры светодиодных источников света чуть больше, чем у аналогичных ламп накаливания. Поэтому, подбирая лампочку к определенному плафону или светильнику, не забудьте проверить габариты. Иначе есть вероятность, что она просто не поместится, куда нужно.

Угол рассеивания. Это угол, на который расходятся световые лучи от источника. Чем параметр выше, тем больше освещаемая площадь. Из-за конструктивных особенностей светодиод всегда светит в основном прямо. Поэтому в лампу встраивают несколько LED-элементов. В зависимости от их расположения внутри корпуса светильника угол рассеивания света может составлять от 30 0 до 360 0 .

Это позволяет создавать, как узконаправленные световые потоки, так широко освещать помещение. Дает возможность для интересных дизайнерских решений. Выбирать угол рассеивания стоит исходя из задачи светильника: для потолочных спотов достаточно 90 0 -180 0 , а для точечной подсветки подойдет и 30 0 .

Также на упаковках указывается:

  • в каком диапазоне напряжений работает источник света (чем он шире, тем выше вероятность того, что источник света, особенно недорогой, не перегорит при скачках в электросети);
  • возможность подключения через диммер – обозначается вот таким значком;
  • коэффициент пульсации (мерцания). Определяется равномерностью свечения. У хороших светодиодных ламп он составляет около 5%, что комфортно для глаз. Источники света с коэффициентом пульсации выше 35% использовать не стоит.

Как подключить светодиодную лампу.

Подключение аналогично лампам накаливания и люминесцентным — следует обесточить патрон и вкрутить в него лампу.

Если необходимо подключить несколько LED источников света, то возможны следующие варианты соединения: последовательный и параллельный.

Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

Последовательный вариант требует минимального количества проводов, но применяется крайне редко. Причиной этому служат два недостатка. Во-первых, при перегорании одной лампочки из строя выходит вся цепь. Во-вторых, лампы работают не в полную силу, так как при последовательном соединении напряжение суммируется. Пожалуй, единственные случаи, где оправдано последовательное соединение – это елочная гирлянда и освещение подъездов. В этих случаях допустимы низкие показатели мощности у многих источников света.

Схема довольно проста:

  • от распределительной коробки фаза идет на выключатель;
  • от выключателя фаза переходит к светодиодной лампе;
  • ко второму контакту последней лампы в цепи подключают нулевой провод;
  • от ламп к друг к другу переходит фазовый провод.

Последовательная схема подключения светодиодных ламп.

Параллельный способ применяется чаще всего. Главное преимущество – подача одинакового напряжения ко всем лампочкам в цепи. В случае перегорания из цепи выпадает лишь, вышедший из строя источник света, который легко заменить.

Параллельно можно соединить двумя способами: лучевым и по шлейфной схеме.

Лучевой метод отличается надежностью. Хотя при этом требуется большое количество кабеля. И важно продумать момент соединения всех элементов. Чаще всего для этого используют клеммную колодку. С одной стороны на ее перемычки подают фазу. С обратной стороны подключают провода, тянущиеся от лампочек. Внутри клеммную колодку рекомендуется заполнить антиокислительной пастой. Также вместо колодки использовать скрутку проводов со спайкой.

Схема параллельного лучевого подключения через клеммную колодку.

При использовании шлейфной схемы фазный и нулевой провода от щитка и выключателя подключаются к первой лампочке. От нее кабель подается на вторую и так далее. Таким образом, каждая лампочка (кроме последней) соединяет с четырьмя проводами: двумя фазными и двумя нулевыми.

Схема параллельного подключения по шлейфной схеме.

Подключение лампочек, работающих от напряжения 12В, аналогично, только в схему необходимо включить понижающий трансформатор.

Схема параллельного подключения точечных светильников 12В через трансформатор.

Преимущества и недостатки светодиодных ламп.

  • энергоэффективность – потребляемая мощность в 8-10 раз меньше, чем у ламп накаливания;
  • большой срок службы – светят примерно в 25 раз дольше ламп накаливания;
  • практически не нагреваются;
  • широкий выбор цветовых температур позволяет «играть» с освещением интерьера;
  • стабильная яркость при перепадах напряжения;
  • мгновенное включение;
  • количество включений не влияет на работоспособность;
  • стойкость к механическим повреждениям и вибрациям;
  • возможность применения в «умном доме»;
  • отличные декоративные качества – выпускается множество интересных форм и размеров;
  • не привлекают мошек и других насекомых из-за отсутствия ультрафиолетового свечения;
  • безопасная утилизация и эксплуатация из-за отсутствия в составе опасных веществ.
  • сравнительно высокая стоимость, хотя она постоянно снижается;
  • мерцание (пульсация), которое невидно невооруженному глазу, но очень опасно для зрения (более распространено в дешевых моделях, которые часто производятся без драйвера);
  • сложность конструкции приводит к повышению стоимости и снижению надежности в сравнении с лампами накаливания;
  • непригодны для использования при очень низких и очень высоких температурах;
  • во многих моделях яркость невозможно регулировать при помощи диммера;
  • если используется выключатель с подсветкой, то LED лампа может мерцать или светиться в выключенном состоянии (как этого избежать, читайте в статье «Почему моргает светодиодная лампа»);
  • снижение яркости в процессе эксплуатации;
  • высокий процент брака среди изделий, особенно среди недорогих.
Читайте также:
Нужен ли увлажнитель воздуха в квартире: какую модель лучше купить, как часто можно включать устройство

В заключение стоит отметить, что светодиодные источники света – действительно экономичные осветительные приборы. Только перед выбором надо внимательно изучить технические характеристики.

Во-первых, ими экономически целесообразно заменять лампы накаливания мощностью свыше 60 Вт. Иначе стоимость самой светодиодной лампы не окупится.

Во-вторых, стоит заменять только источники света в светильниках, которые работают максимальное количество часов в день.

И, в-третьих, специалисты советуют вначале опробовать несколько марок светодиодных ламп, чтобы определить, чья цветовая температура (и другие параметры) устроит ваши глаза на 100%.

Как устроена и как работает светодиодная лампа

Светодиодные лампочки пользуются все большей популярностью у покупателей, что объясняется рядом достоинств этих источников света. В отличие от классических ламп накаливания и ламп дневного света их энергопотребление существенно ниже, да и рабочий ресурс заметно больше. При равной потребляемой мощности LED-лампочки обеспечивают лучшую освещенность комнат, чем те же люминесцентные аналоги. Все это вынуждает подробно ознакомиться с тем, что такое светодиодная лампа, какой у нее принцип работы и конструкция. Итак, обо всем по порядку.

Устройство LED-лампы

Пользователям, желающим ознакомиться с тем, что это такое, придется разобраться с конструкцией и принципом работы светодиодной лампочки. Прежде всего, классический LED светильник представляет собой сборное устройство, состоящее из следующих основных узлов (фото ниже):

  • Нескольких светодиодных излучателей, размещенных на теплоотводящей алюминиевой подложке (радиаторе).
  • Матового куполообразного рассеивателя, конструкция которого обеспечивает равномерность распределения светового потока.
  • Электронного преобразователя (драйвера), снабжающего LED светодиоды питанием нужного качества.
  • Стандартного цоколя (E14, E 27, E 40 и других типов).

Конструкция LED лампы

Важно! В простейших моделях лампочек от китайского производителя может устанавливаться один мощный светодиод.

При рассмотрении различных вариантов исполнения светодиодных лампочек важно научиться различать их по величине питающего напряжения.

Принцип действия

Принцип работы лампочки на светодиодах представляется как ряд преобразований, обеспечивающих свечение входящих в ее состав излучателей. При подаче питающего напряжения на цоколь сначала оно поступает на драйвер, назначение которого как раз и состоит в приведении высокого напряжения к приемлемому для LED ламп виду.

Чтобы кратко описать этот способ энергообеспечения, достаточно обратиться к следующей схеме:

Схема светодиодной лампы

Если выражаться простыми словами – ее работа может быть представлена так:

  1. Сначала переменное напряжение подается на диодный мост, где частично выпрямляется.
  2. Следующая за ним электролитическая емкость предназначена для сглаживания пульсаций.
  3. После этого полностью выпрямленное напряжение подается на контроллер, управляющий работой LED лампы.
  4. С электронного модуля оно через развязывающий импульсный трансформатор поступает непосредственно на светодиоды.

Важно! При ответе на нередко задаваемый вопрос: для чего нужна такая развязка, ответим – ее наличие частично снижает угрозу поражения высоким напряжением при работе с цоколем лампы.

Принцип действия LED лампочки на 12 Вольт намного проще, поскольку для преобразования напряжения потребуется типовой блок питания и ничего больше. А это, в конечном счете, снижает стоимость всего изделия в целом.

Различия по типу питания

В соответствие с этим параметром известные образцы LED ламп подразделяются на следующие модификации:

  • со светодиодами, рассчитанными на 220 Вольт.
  • работающие от пониженного и выпрямленного напряжения 12 Вольт.

Первые в этом списке источники света работают в типовых электросетях и включаются подобно обычным лампам накаливания.

Светодиодные лампы, рассчитанные на 12 Вольт постоянного тока, благодаря низкому напряжению и широкому выбору цоколей, относятся к универсальным изделиям.

Виды LED-лампочек на 12 Вольт

Для работы таких ламп потребуется специальный блок питания, понижающий переменное сетевое напряжение до постоянной величины 12 Вольт.

Область применения

При рассмотрении вопроса о том, где применяются светодиодные лампы, потребуется отдельный подход к различным образцам. Изделия, включаемые непосредственно в сеть 220 Вольт, эксплуатируются как обычные лампы (люминесцентные или накаливания) с соответствующим цоколем. В отличие от них низковольтные светодиодные осветители используются в самых различных целях, начиная от точечного освещения при обустройстве натяжных потолков и заканчивая организацией наружной и внутренней подсветки. Отдельные образцы позиционируются как автомобильные лампочки, устанавливаемые в большинстве моделей современного автотранспорта.

Важно! Сравнительно низкое по величие напряжение питания обеспечивает светодиодным лампам высокую электрическую и пожарную безопасность (исключает удар током и возгорание).

Читайте также:
Наружные жалюзи: описание с фото, отзывы, плюсы и минусы

Указанные достоинства позволяют расширить область применения LED лампочек и устанавливать низковольтные модели в следующих ситуациях:

  1. В помещениях повышенной влажности (например, при обустройстве светодиодной подсветки зеркала в ванной).
  2. В условиях высокой пожарной и взрывоопасности.
  3. При обустройстве подсветок различного вида.
  4. В складах и подвальных помещениях.
  5. На улице под открытым небом.

В последнем случае такие лампы могут эксплуатироваться без специальных мер защиты и использования проводки с повышенными требованиями к надежности изоляции.

Обратите внимание: Универсальность светодиодных ламп подчеркивается тем, что в качестве блока питания в них нередко используется модуль от ленточных светодиодных подсветок.

Однако для надежности эксплуатации низковольтных ламп лучше всего воспользоваться специализированным блоком питания 12 Вольт, рассчитанным на работу со светодиодами.

Виды ламп и оценка их качества

С технической точки зрения все рассмотренные светодиодные лампы различаются по следующим показателям:

  • Вид питания (220 или 12 Вольт). .
  • Количества светодиодов.
  • Мощность освещения (световой поток).
  • Форма корпуса.

По конструктивным особенностям, влияющим на надежность данного образца и его стоимость, LED лампочки подразделяются на фирменные изделия и на дешевые китайские образцы. Последние из них имеют более простое устройство и не отличаются высокой надежностью.

Китайская лампа

Конструктивные отличия брендовых изделий от китайского ширпотреба проявляется в таких деталях как наличие «мощного» теплового отвода и качественно оформленные рассеиватель и цоколь.

Качественная LED-лампочка

Любая лампочка на светодиодах, представленная на рынке, рассматривается пользователем двояко: со стороны ее надежности (качества) и с точки зрения издержек на покупку. При таком подходе к приобретению осветителей выбор остается за самим покупателем. В заключение отметим, что светодиоды позволяют на практике реализовать принцип экономии электроэнергии в бытовых условиях. Благодаря особенностям их устройства и функционирования удается сберечь часть средств, расходуемых на осветительные нужды.

Теперь вы знаете, что такое светодиодная лампа, как она устроена и как работает. Надеемся, предоставленная информация была для вас понятной и полезной!

Виды и принцип работы современных электрических бытовых ламп освещения

Виды ламп освещения

Современные виды ламп, которые применяются для освещения жилых, офисных, хозяйственно-бытовых помещений на сегодняшний день впечатляют своим разнообразием. Отличаются они друг от друга не только мощностью освещения, но и принципом действия, как следствие – разнообразием оттенков света, долговечностью и потребляемым количеством электроэнергии.

Соответственно, бывают виды ламп освещения, которые потребляют небольшое количество электроэнергии и при этом излучают яркое освещение и минимум тепла – эти лампы классифицируются, как энергосберегающие лампы, виды их по конструкции также разнообразны.

Нового поколения виды электрических ламп бывают таковыми, которые являются устойчивыми к перепадам напряжения в сети и имеют большее количество часов работы и циклов включения/выключения, что в сочетании с низким энергопотреблением значительно отличает их от традиционных ламп накаливания.

Однако, современные лампы освещения не ограничиваются этим, они имеют не только показатели светоотдачи, потребления электроэнергии и количество часов работы, существует и множество и других нюансов, как частота мерцания, экологичность, наличие/отсутствие встроенных выпрямителей тока, и многое другое.

Посему рассмотрим, какие бывают виды ламп на сегодняшний день, в первую очередь – основные положения, затем — рассмотрим принцип действия электрических ламп освещения из такого существующего их перечня:

  • лампы накаливания;
  • газоразрядные лампы;
  • светодиодные лампы.

Лампы накаливания являются наиболее распространенными на территории стран СНГ, и, пожалуй, самым древним видом ламп. Они не имеют ни каких особенных преимуществ, выделяют много тепла, потребляют много электричества, не имеют защиты от перепадов напряжения.

Единственное преимущество – теплое, подобное натуральному, солнечное освещение, которое, по мнению многих, не сравнится с явно искусственным освещением других видов ламп. Кроме того, они являются экологически чистыми в отличие от следующего вида ламп.

Мощности современных ламп освещения

Газоразрядные лампы, а также их разновидность — люминесцентные лампы хороши тем, что имеют множество разновидностей, каждая из которых имеет определенное лучшее качество.

Ранее на территории СНГ были распространены классические, ртутные лампы дневного освещения, но на сегодня они в большей степени ушли в небытие и на их место пришли новые их разновидности.

Виды современных газоразрядных ламп применяются не только как обыкновенные источники электрического освещения в быту; они имеют декоративные разновидности, приемлемые для подсветки потолков, ниш и т. д.

Светодиодные лампы являются ничем иным, как современной альтернативой предыдущим двум видам ламп. Эти лампы – нового поколения энергосберегающие, экологичные и долговечные (стойкие к перепадам напряжения) осветительные электрические элементы.

Они имеют явное преимущество перед остальными видами ламп, но единственный недостаток – стоимость, так как технология их производства на сегодня новая и довольно дорогостоящая. Но их долговечность и экономичность, по мнению производителей, окупит разовые затраты на их приобретение.

Виды и принцип работы современных ламп накаливания

Принцип работы современных ламп накаливания

Принцип работы лампы накаливания основан на нагреве металлической спирали, находящейся в вакууме (лампы мощностью до 25Вт) или газе аргон или аргон+азот (средней мощности и высокомощные лампы) в герметично запаянной стеклянной колбе.

При прохождении через спираль, ток разогревает ее до температуры, равной впредь до 3000 градусов по Цельсию, вместе с этим происходит и излучение света, инфракрасных лучей.

Читайте также:
Самодельные прижимы для склейки деревянных коробов

Сама спираль выполнена из особо прочного и весьма тугоплавкого металла – вольфрама, а степень яркости освещения прямо пропорционально зависит от температуры нагрева; кроме того, газовая среда, в которой находится спираль, может содержать в себе частицы галогенов – соединений 17-ой гр. Таб. Менделеева (F, Cl, Br, I).

Современные лампы накаливания производятся из стекла с металлическим плафоном, имеющим резьбу, по средствам которой происходит фиксация в патроне, но имеются разновидности с контактно-зажимными и штыревыми типами соединений.

Виды ламп накаливания могут иметь четыре модификации, четыре условных обозначения, указывающих на тип спирали и окружающей ее среды в лампе накаливания: В (вакуумная), Б (биспиральная с аргоновым напылением), БО (биспиральная с аргоновым наполнением в опаловой колбе), Г (моноспиральная с аргоновым напылением).

Виды современных ламп накаливания

Отдельным видом наиболее современных ламп накаливания являются галогенные лампы накаливания, отличие которых от вышеописанных обусловлено содержанием галогенных частиц в газовой среде лампы накаливания (частиц йода, хлора, брома), которые вступают в реакцию с испарившемся металлом с поверхности спирали.

После этого процесса металл возвращается на поверхность спирали по средствам температурного разложения получившегося соединения. Таким образом, они имеют больший КПД, срок годности и другие характеристики.

Что касается бытового назначения ламп накаливания, то они являются лампы общего назначения и обозначаются аббревиатурой ЛОН.

Виды и принцип работы современных газоразрядных ламп

Принцип работы современных газоразрядных ламп освещения

Принцип работы газоразрядных ламп состоит в том, что видимое излучение света происходит вследствие возникновения разряда электричества в герметичной среде газа (неон, аргон, криптон, ксенон) или пара металлов (натрий, ртуть).

Таким образом, среда газа/пара металла – это и есть проводник тока, который от вольфрамового электрода с большим потенциалом (фазы, «+») проводит его к вольфрамовому электроду с меньшим потенциалом (нуля, «-»), излучая минимум тепла при высокой степени светоотдачи.

Ртутные, люминесцентные лампы

При этом в составе среды газа/пара могут применяться и галогены (фтор/F, хлор/Cl, бром/Br, йод/I), которые улучшают светоотдачу и остальные показатели газоразрядных ламп.

Существует также и газоразрядные люминесцентные лампы – лампы, в которых в результате разряда в парах ртути образуется невидимое для человеческого глаза ультрафиолетовое излучение (тепловое излучение), которое преобразуется в видимый свет при помощи находящегося на внутренних стенках колбы напыления люминофора (соединений галофосфата).

Виды газоразрядных ламп подразделяются на лампы низкого и высокого давления – по давлению внутри колбы.

Лампы высокого давления имеют в качестве основного преимущества высшую степень светоотдачи, и подразделяются в свою очередь по типу наполнителя на:

  • ртутные;
  • натриево-ртутные;
  • иодидо-металло-ртутные;
  • инертно-газовые.

Ртутные газоразрядные лампы высокого давления имеют напыление люминофора, является Люминесцентной лампой высокого давления и обозначается аббревиатурой ДРЛ.

Натриево-ртутные газоразрядные лампы высокого давления именуются также как просто натриевые и обозначаются аббревиатурой ДНаТ.

Виды газоразрядных ламп

Иодидо-металло-ртутные газоразрядные лампы, а точнее лампы высокого давления с наполнителем — иодидами редкоземельных металлов с вмещением ртутных паров, именуются как металлогалогенные лампы и носят аббревиатуру ДРИ.

Инертно-газовые газоразрядные лампы высокого давления являются сугубо газовыми лампами, в которых применяются аргон, ксенон, неон, криптон или же их смеси и носят названия соответственно содержания газа.

Лампы низкого давления имеют преимущества только при освещении помещений, не нуждающихся в высокой мощности осветительных приборов; чаще всего – это декоративного освещения источники света, которые в зависимости от наполнителя бывают такие:

  • ртутные с инертным газом;
  • натриевые.

Лампы низкого давления с наполнителем паров ртути с примесью разновидностей инертного газа, именуемые как обыкновенные люминесцентные лампы (ЛЛ) и содержат еще слой люминесцена (см. принцип работы газоразрядных ламп).

Лампы низкого давления с наполнителем паров натрия – не являются таковыми, как предыдущие из-за совсем иного принципа действия, обозначаются аббревиатурой ДнаС.

Прочитав вышеописанные виды и принцип работы, Вы уже догадались, что по источнику света эти лампы подразделяются на газоразрядные и люминесцентные, а что касается низкого давления таких ламп, он на сегодняшний день их производят в качестве энергосберегающих.

Виды и принцип работы современных светодиодных ламп

Принцип работы современных светодиодных ламп

Принцип работы светодиодных ламп состоит в излучении света от находящихся в этих лампах одиночных светодиодов или групп светодиодов, связанных специальной микросхемой, вмещающей в себе преобразователь сетевого тока в рабочий ток, на котором работают данные элементы.

Сам же светодиод представляет собой полупроводниковый аналоговый элемент, ранее использовавшийся для индикации в микроэлектронике. Этот элемент семейства диодов перерабатывает электрический ток в свет по средствам прохождения его (тока) через полупроводниковый кристалл. Кроме того, он имеет свойство пропускать ток только в одном направлении.

Если подробнее о принципе действия светодиода лампы, то он состоит из анода и катода, которые расположены по противоположным сторонам светоизлучающего кристалла, который легирован с этих сторон примесями: с одной – акцепторными, со второй — донорскими. В свою очередь кристалл находится на подложке из различного материала: кремния, силикона или находится в стеклянной оболочке.

Виды современных светодиодных ламп

При прохождении электрического тока от источника с большим потенциалом (анода, «+»), он движется через кристалл в направлении электрода с меньшим потенциалом (катод, «-»). Эту область перехода тока называют p-n переходом, в котором, собственно и возникает свечение при рекомбинации электронов и дырок в его области.

Виды светодиодных ламп как таковые, различные по конструкции, по составу внутренней среды и остальным техническим параметрам, присущим лампам накаливания и газоразрядным лампам, не существуют.

Читайте также:
Профиль для поликарбоната алюминиевый

Имеются различия по форме плафонов (стандарты соответствуют остальным лампам), цветовой отдаче, и по рабочему питанию, что мы рассмотрим подробнее. Касаемо последнего, светодиодные лампы различают:

  • питание 4В;
  • питание 12В;
  • питание 220В.

Светодиодные лампы с питанием 4В применяются для слабомощных источников освещения, часто применяются в декоративных светильниках — «свечках». Соответственно, применяются как вспомогательное локальное, часто-густо декоративное освещение.

Светодиодные лампы 12В являются заменой современных ламп накаливания, также и галогенных ламп, а также разновидностей газоразрядных/люминесцентных ламп. Они имеют достойную мощность освещения при невысокой теплоотдачи, что делает их не только хорошими источниками общего, но и мебельного встроенного освещения.

Светодиодные лампы 220В – используются для высокомощного освещения, входное питание 220В преобразуется в меньшее по средствам встроенного трансформатора и питает светоизлучающие элементы (светодиоды). Единственный вид светодиодных ламп, которые не требуют отдельного подключения трансформатора.

Устройство светодиодной лампы, принцип работы светодиода

Что такое светодиоды

Светодиод представляет собой двухпроводный полупроводниковый источник света. Когда подходящий ток подается на выводы, электроны способны рекомбинировать с электронными дырами внутри устройства, выделяя энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света определяется зазором энергетической зоны полупроводника.

Что такое светодиод

Светоизлучающий диод является оптоэлектронным устройством, способным излучать свет, когда через него проходит электрический ток. Светоизлучающий диод только пропускает электрический ток в одном направлении и производит некогерентное монохроматическое или полихроматическое излучение от преобразования электрической энергии.

Он имеет несколько производных:

Принцип работы светодиодов

Из-за световой эффективности светодиоды на современном этапе представляют собой 75% рынка внутреннего и автомобильного освещения. Они используются при строительстве телевизоров с плоским экраном, а именно: для подсветки ЖК-экранов или источника электроэнергии. Используются в качестве основного освещения в OLED-телевизорах.

Первые светодиоды, поступившие в продажу, производили инфракрасный, красный, зеленый, а затем желтый свет. Выход синего светодиода, связанный с техническим и монтажным прогрессом, позволяет покрыть диапазон длины волны излучения, простирающийся от ультрафиолетового (350 нм) до инфракрасного (2 тыс. нм), который отвечает многим потребностям. Многие устройства оснащены составными светодиодами (три в одном компоненте: красный, зеленый и синий) для отображения многих цветов.

Светодиодная лампа

Светодиодные лампы — это светотехнические изделия для бытового, промышленного и уличного освещения, в которых источником света являются светодиоды. По сути это набор светодиодов и схемы питания для преобразования сетевой энергии на постоянный ток низкого напряжения.

Как работают светодиоды

Светодиодный светильник представляет собой отдельное и самостоятельное устройство. Его корпус чаще всего индивидуален по конструкции и специально спроектирован под различные источники освещения. Большое количество ламп и их малый размер позволяют расположить их в разных местах, собирать панели, использовать для подсветки дисплеев, телевизоров .

Освещение общего назначения требует белого света. Принцип работы светодиодной лампы основан на излучении света в очень узком диапазоне длин волн: то есть, с цветовой характеристикой энергии полупроводникового материала, который используется для изготовления светодиодов. Для излучения белого света от светодиодной лампы надо смешивать излучения от красного, зеленого и синего светодиодов или использовать люминофор для преобразования частей света в другие цвета.

Один из методов — RGB (red, green, Blue), это использование нескольких светодиодных матриц, каждая из которых излучает различную длину волн, в непосредственной близости, для создания общего белого цвета.

История создания первых ламп

Первое излучение света полупроводником датируется 1907 годом и было открыто Генри Джозефом Раундом. В 1927 году Олег Владимирович Лосев подал первый патент на то, что впоследствии будет называться светоизлучающим диодом.

В 1955 году Рубин Браунштейн обнаружил инфракрасное излучение арсенида галлия — полупроводник, который позже будет использоваться Ником Холоньяком-младшим и С. Беваккой для создания первого красного светодиода в 1962 году. В течение нескольких лет исследователи ограничились некоторыми цветами, такими как красный (1962), желтый, зеленый и более поздний синий (1972).

Вклад японских ученых

Свойства светодиодов

В 1990-х годах исследования Shuji Nakamura и Takashi Mukai of Nichia в полупроводниковой технологии InGaN позволили создать синие светодиоды высокой яркости, а затем адаптироваться к белым, добавив желтый люминофор. Это продвижение позволило использовать новые крупные приложения, такие как освещение и подсветка телевизионных экранов и ЖК-экранов. 7 октября 2014 года Шудзи Накамура, Исаму Акасаки и Хироши Амано получили Нобелевскую премию по физике за работу над голубыми светодиодами.

Принцип работы устройства

Когда диод смещен вперед, электроны быстро движутся через соединение. Они постоянно объединяются, удаляя друг друга. Вскоре, после того как электроны начинают движение от n-типа к кремнию p-типа, диод соединяется с отверстиями, а затем исчезает. Следовательно, он делает полный атом более стабильным и дает небольшой импульс энергии в виде фотона света.

Принцип образования световой волны

Состав светодиодов

Чтобы разобраться как устроен светодиод, необходимо узнать о его материалах и их свойствах. Светодиод представляет собой специализированную форму PN-перехода, которая использует составное соединение. Составным должен быть полупроводниковый материал, используемый для соединения. Обычно используемые материалы, включая кремний и германий, являются простыми элементами, и соединение, изготовленное из этих материалов, не излучает свет. Что же касается таких полупроводников, как арсенид галлия, фосфид галлия и фосфид индия — они являются составными, и соединения из этих материалов излучают свет.

Читайте также:
Очистка и дезинфекция воздуховодов системы вентиляции

Эти составные полупроводники классифицируются по валентным зонам, которые занимают их составляющие. Арсенид галлия имеет валентность трех, а мышьяк — валентность пяти. Это и называют полупроводником группы III-V. Существует ряд других полупроводников, которые соответствуют обозначенной категории. Есть полупроводники, которые образуются из материалов группы III-V.

Типы светодиодов

Светоизлучающий диод излучает свет, когда он смещен вперед. Когда напряжение накладывается на соединение, чтобы заставить его смещаться вперед, ток течет, как и в случае любого PN-соединения. Отверстия из области р-типа и электроны из области n-типа входят в соединение и рекомбинируют, как нормальный диод, чтобы обеспечить протекание тока. Когда это происходит, выделяется энергия.

Обнаружено, что большая часть света получается из области перехода ближе к области Р-типа. Конструкция диодов выполнена таким образом, что эта область располагается как можно ближе к поверхности устройства для поглощения конструкцией минимального количества света.

Чтобы получить свет, который можно увидеть, соединение следует оптимизировать, а материалы должны быть правильными. Чистый арсенид галлия выделяет энергию в инфракрасной части спектра. Для приведения световой эмиссии алюминий добавляется к полупроводнику в видимый красный спектр с последующим получением арсенида аргицида галлия (AlGaAs). Можно добавить и фосфор, чтобы получить красный свет. Для других цветов используются иные материалы. Например, фосфид галлия дает зеленый свет, а фосфид алюминия кальция используется для получения желтого и оранжевого света. Большинство светодиодов основаны на галлиевых полупроводниках.

Квантовая теория

Поток тока в полупроводниках обусловлен обоими потоками свободных электронов в противоположном направлении. Следовательно, будет рекомбинация из-за потока этих носителей заряда.

Рекомбинация показывает, что электроны в зоне проводимости спускаются к валентной зоне. Когда они перескакивают из одной полосы в другую, то излучают электромагнитную энергию в виде фотонов, а энергия фотона равна запрещенной энергетической щели.

Отображено математическое уравнение:

H известна как постоянная Планка, а скорость электромагнитного излучения равна скорости света. Частотное излучение связано со скоростью света как f = c / λ. λ обозначается как длина волны электромагнитного излучения, а уравнение станет таким:

Исходя из этого уравнения можно понять, как работает светодиод, основываясь на том, что длина волны электромагнитного излучения обратно пропорциональна запрещенной щели. В целом полное излучение электромагнитной волны при рекомбинации имеет вид инфракрасного излучения. Невозможно увидеть длину волны инфракрасного излучения, потому что она находится вне видимого диапазона.

Инфракрасное излучение называется теплотой, потому что кремний и германиевые полупроводники не являются прямыми щелевыми полупроводниками, а относятся к непрямым промежуточным разновидностям. Но в полупроводниках с прямым зазором максимальный уровень энергии валентной зоны и минимальный уровень энергии зоны проводимости не происходит одномоментно с электронами. Поэтому во время рекомбинации электронов и дырок происходит миграция электронов из зоны проводимости в валентную зону, и импульс электронной зоны будет изменен.

Преимущества и недостатки

Как и любое устройство светодиод также имеет ряд своих особенностей, основные преимущества и недостатки.

Главные преимущества выглядят так:

Светодиод изнутри

  • Небольшие размеры: например, можно изготавливать светодиоды размером с пиксель (что открывает возможность использования диодов для создания экранов с высоким разрешением).
  • Простота сборки на печатной плате, традиционная или CMS (компонент с поверхностным монтажом).
  • Потребление электрической энергии ниже, чем у лампы накаливания, и того же порядка величины, что и люминесцентные лампы.
  • Отличная механическая устойчивость.
  • Собирая несколько светодиодов, можно добиться хорошего освещения с помощью инновационных форм.
  • Продолжительность жизни (приблизительно от 20 000 до 50 000 часов), что намного дольше, чем обычная лампа накаливания (1 тыс. часов) или галогенная лампа (2 тыс. часов). Тот же порядок величины, что и у люминесцентных ламп (от 5 тыс. до 70 000 часов).
  • Очень низкое напряжение, гарантия безопасности и легкость транспортировки. Для отдыхающих есть светодиодные фонарики, питаемые простым ручным динамомедленным движением («кривошипная лампа»).
  • Световая инерция почти нулевая. Диоды включаются и выключаются за очень короткое время, что позволяет использовать при передаче сигналов ближнего (оптопары) или дальнего (оптического волокна) сигналов. Они сразу достигают своей номинальной силы света.
  • Благодаря своей мощности классические 5-миллиметровые светодиоды едва нагреваются и не могут обжечь пальцы.
  • Светодиоды RGB (красный-зеленый-синий) позволяют использовать цветные улучшения с неограниченными возможностями вариаций.

Из недостатков можно отметить такие:

Органические светодиоды

  • Светодиоды, как и любой электронный компонент, имеют максимальные пределы рабочей температуры, а также некоторые пассивные компоненты, составляющие их схему питания (например, химические конденсаторы, которые нагреваются в зависимости от среднеквадратичного тока). Теплоотдача компонентов светодиодных лампочек является фактором, ограничивающим увеличение их мощности, особенно в многочиповых сборках.
  • По словам производителя Philips, световая эффективность некоторых светодиодов быстро падает. Температура ускоряет падение световой эффективности. Philips также указывает, что цвет может меняться на некоторых белых светодиодах и светится зеленым, когда они становятся старше.
  • Процесс изготовления светодиода очень энергозатратный. Зная основные характеристики светодиодов, их преимущества и недостатки, можно сделать выбор — либо приобрести их, либо отказаться от покупки и пользоваться обыкновенными лампами накаливания. Однако учитывая экономичность такого освещения, стоит задуматься над тем, что оно может стать хорошей альтернативой привычным, более дешевым источникам света.
Ссылка на основную публикацию