Нагреваются ли светодиодные лампы

Проблема перегрева осветительных светодиодов и пути ее решения

Если сравнивать со стремительно уходящими в прошлое источниками света, то светодиодные источники имеют всего один, но крайне серьезный изъян. Их долговечность и надежность в значительной степени зависят от эффективности отвода тепла от излучающих свет компонентов. Поэтому схема защиты светодиода от перегрева — важная составная часть любой качественной светодиодной системы освещения.

Среднестатистический осветительный светодиод десятикратно превосходит по энергоэффективности (экономичности) традиционную лампочку с нитью накаливания. Однако, если светодиод не установить на радиатор достаточной площади, то он скорее всего быстро выйдет из строя. Принято считать, не вдаваясь в подробности, что более эффективные осветительные светодиоды нуждаются в более эффективном отводе тепла чем обычные.

Давайте, тем не менее, рассмотрим проблему более глубоко. Оценим два фонаря: первый — галогенный, второй — светодиодный. И уже после — обратим внимание на способы сохранения долговечности светодиодов и продления жизни их драйверам. Дело в том, что защитная часть светодиодной системы освещения должна обеспечить безопасное функционирование как светодиодам, так и схемам — драйверам.

К примеру у нас имеется два фонаря. Оба устройства дают по 10 Вт световой мощности. Разница лишь в том, что прожектор на галогенной лампе требует 100 Вт электрической мощности, а светодиод — всего 30 Вт.

Мы знаем, что светодиоды эффективнее по производимому свету примерно в 10 раз, но в реальности они крайне чувствительны к высоким температурам, и для них поэтому очень важен температурный режим, при котором происходит преобразование энергии электрического тока – в свет.

Светодиодный светильник мощностью 30 Вт

Для светильника с галогенной лампой рабочая температура даже в +400 °C является безопасной нормой, в то время как для светодиодов температура кристалла в +115 °C уже критически опасна, а максимальная температура корпуса диода составляет всего +90 °C. Поэтому светодиоду нельзя давать перегреваться, и на то есть несколько причин.

С повышением температуры светоизлучающего перехода, световая эффективность светодиода понижается, и это зависит как от конструкции светодиода, так и от состояния окружающей среды. К тому же светодиоды в принципе отличаются отрицательным температурным коэффициентом прямого падения напряжения на переходе. Это значит, что с увеличением температуры перехода, прямое падение напряжения на нем уменьшается. Обычно данный коэффициент варьируется от -3 до -6 мВ/К.

Таким образом, если при 25 °C прямое падение напряжения на светодиоде составляет 3,3 В, то при 75 °C оно будет уже 3 или менее вольт. И если драйвер светодиода не уменьшает по мере роста температуры напряжение на всех светодиодах сборки, то в один прекрасный момент ток станет поддерживаться неадекватно высоким, что приведет к перегреву, перегрузке, дальнейшему снижению прямого падения напряжения, и еще более быстрому нарастанию температуры кристалла. Дешевые светодиодные светильники с резистивным ограничением тока часто проявляют данный недостаток в самый неожиданный момент.

Допуски по колебаниям напряжения блока питания в сочетании с различиями в прямом падении напряжения на светодиоде (на этапе производства светодиоды не идеально одинаковы по данному параметру), и в связи с отрицательным температурным коэффициентом падения напряжения — в любой момент эти факторы в совокупности могут вызвать нарушение безопасного режима функционирования светодиода и спровоцировать скатывание к его саморазрушению.

Конечно, если конструкция светодиодного светильника (особенно — радиатора) достаточно надежна, то кратковременными снижениями яркости можно пренебречь, так как они очень редки и перегревы эти кратковременны. Но если перегрев продолжителен, то превышение температуры сразу превращается в настоящую угрозу для светильника.

Мощный светодиод на радиаторе

Причины выхода светодиодов из строя при их перегреве

Светодиоды разрушаются от перегрева по нескольким причинам. Первая причина — изменение механического напряжения внутри светоизлучающего кристалла и монолитной светодиодной сборки. Вторая — нарушение герметичности, проникновение влаги и окисление. Защитный эпоксидный слой деградирует, происходит расслоение на границах, контакты кристалла испытывают коррозию.

Третья — рост количества дислокаций в кристалле ведет к изменению путей тока и возникновению точек превышения плотности тока и, соответственно, к перегреву этих точек. Наконец — явление диффузии металлов на контактах при повышенной температуре, что также в конце концов приводит к неработоспособности светодиода.

Читайте также:
Особенности применения наклеек на мебель, выбор материалов и тематики

Разработчики светодиодов всеми силами пытаются свести к минимуму данные факторы отказа, и поэтому все время технологически совершенствуют производственный процесс. Тем не менее из-за перегрева отказы все равно неизбежны, хотя и становятся реже с совершенствованием производственного процесса.

Нагрев светодиодов

Механическое давление — самая частая причина преждевременного выхода светодиодов из строя. Суть в том, что при перегреве герметик размягчается, электрические контакты и соединительные проводники смещаются от «заводского» положения, а когда температура наконец падает, происходит охлаждение, и герметизирующее вещество вновь застывает, но при этом давит на уже немного смещенные соединения, что в итоге приводит к явному нарушению первоначально равномерной проводимости. Благо, светодиоды изготовленные без соединительных проводников практически лишены данного недостатка.

Паяные соединения между светодиодом и подложкой также испытывают похожую проблему. Регулярные циклические, не заметные на глаз, размягчения и затвердевания заканчиваются появлением трещин в пайках и нарушением исходного контакта. Вот почему встречаются отказы светодиодов по причине разрыва цепи питания, причем разрыв этот часто не виден. Чтобы предотвратить данную проблему, можно максимально уменьшить разницу между безопасной рабочей температурой светодиода и температурой окружающей среды.

Мощные светодиоды (потребляющие больше электрической мощности) дают больше света, но их световая отдача все же имеет ограничение. Вот почему у потребителей и производителей часто возникает опасный соблазн эксплуатировать светодиоды в светильнике на полную мощность, дабы получить максимально возможную яркость. Но это действительно опасно, если не обеспечить достаточно эффективного охлаждения.

Разумеется, дизайнеры хотят создавать элегантные светильники интересных форм, однако они порой забывают что необходимо обязательно обеспечить соответствующее движение воздуха и адекватный отвод тепла — это для светодиодов зачастую самое главное, следующее за стабилизированным и качественным источником питания.

Да и непосредственно установка светодиодных светильников важна. Если один светильник установлен над другим таким же мощным, то поток воздуха от нижнего светильника может быть замедлен верхним, и нижний будет находиться поэтому в худших температурных условиях. Либо например теплоизоляция в стене или на потолке помещения может помешать теплоотводу, даже если при конструировании светильника все тепловые расчеты были выполнены идеально и технологически он изготовлен максимально правильно. Все равно вероятность отказа повышается просто из-за необдуманного и неграмотного монтажа готового изделия.

Одно из достойных решений проблемы перегрева светодиодов — включение в схему драйвера температурной защиты с обратной связью именно по температуре. Когда температура излучателя по какой-нибудь причине опасно повысилась — для понижения мощности, с целью удержания температуры внутри безопасного диапазона, автоматически уменьшается ток.

Простейшее решение — добавить в схему термистор с положительным температурным коэффициентом (можно и с отрицательным температурным коэффициентом, но тогда схема должна инвертировать сигнал в цепи обратной связи).

Пример термической защиты с использованием термистора

Для примера рассмотрим схему на базе специализированного микроконтроллера с токоограничительной цепью. Когда температура поднимается выше определенного порога (задается термистором и резисторами), термистор с положительным коэффициентом сопротивления, закрепленный на радиаторе вместе со светодиодами, увеличивает свое сопротивление, что приводит к соответствующему уменьшению тока в выходной цепи драйвера.

В этом плане очень удобны схемы драйверов с регулировкой яркости по принципу ШИМ (широтно-импульсной модуляции), позволяющие одновременно и вручную регулировать яркость, и защищать светодиоды от перегрева.

Пример термической защиты с использованием термистора

Решение с термистором удобно тем, что изменение тока, а значит и уменьшение яркости, будет в такой схеме происходить плавно, незаметно для глаз и нервной системы, а значит ничего не будет мерцать и не вызовет у окружающих людей и животных раздражения. Температура верхней границы просто определяется выбором термистора и резистора. Это гораздо лучше решений с термодатчиками, которые просто резко размыкают цепь и дожидаются пока радиатор остынет, а потом снова включают освещение на полную яркость.

Специализированные микросхемы-драйверы светодиодов, безусловно, стоят денег, однако получаемые взамен надежность и долговечность работы светильника многократно окупят это вложение.

Стоит лишь вспомнить, что при соблюдении нормального температурного режима эксплуатации светодиодов их срок службы измеряется десятками тысяч часов, тогда и вопросы касательно материальных затрат на «правильный» драйвер отпадают сами собой.

Читайте также:
Пластиковые скамейки: садовая лавочка для дачи и скамья со спинкой, складная и с пластиковым сиденьем, белые и другого цвета

Важно лишь обеспечить самому драйверу постоянную невысокую температуру, для этого всего лишь не нужно размещать его близко к радиатору светодиодов. Не правильно делают те, кто донельзя стремится уплотнить размещение компонентов внутри корпуса прожектора. Лучше вывести корпус драйвера отдельным блоком. Здесь безопасность и предусмотрительность — залог долговечности светодиодов.

Лучшие микросхемы для управления питанием светодиодов оснащены внутренними цепями защиты от собственного перегрева на тот случай если микросхема по конструктивным соображениям разработчика светильника все же должна размещаться в одном корпусе с заметно нагревающимися компонентами, такими как радиатор. Но лучше вообще не допускать перегрева микросхемы выше 70 °C и оснастить ее собственным радиатором. Тогда и светодиоды и микросхема драйвера проживут дольше.

Зависимость тока светодиода от температуры радиатора

Интересным может оказаться решение с применением двух последовательно соединенных термисторов в цепи термической защиты. Это будут разные термисторы, так как безопасные температурные границы у микросхемы и у светодиодов различны. А вот результат будет достигнут что надо — плавная регулировка яркости как при перегреве драйвера, так и при перегреве светодиодов.

Греются ли светодиодные лампы?

В продаже LED-лампочки появились не так давно, поэтому вопрос о том, нагреваются ли светодиодные лампы, беспокоит многих. Чтобы найти ответ, необходимо понять конструкцию осветительных приборов на основе светоизлучающих диодов (LED).

Несколько слов о конструкции

LED-лампы представляют собой сложный электронный прибор, конструкция которого делится на несколько частей:

  • Рассеиватель. Представляет собой стеклянную или пластиковую колбу, которая служит для равномерного рассеивания светового потока.
  • Чипы – излучающие свет диоды.
  • Печатная плата – площадка, на которой смонтированы светодиоды. Выполняется из материала с высоким показателем теплопроводности.
  • Радиатор – конструкция из материала с высокой теплопроводностью. Служит для отвода тепла.
  • Драйвер – блок питания светодиодов, служит для преобразования переменного напряжения 220 вольтовой электросети в питание, необходимое для нормальной работы светодиодов.
  • Цоколь – немаловажный элемент, служащий для соединения лампочки с ламповым патроном.

конструкция светодиодной лампы

Из конструкции видно, что светодиодные лампы греются, а для отвода выделяемого тепла устанавливается радиатор из специального материала с высокой теплопроводностью.

Радиатор в LED-лампочке предназначен для отвода тепла от единственной нагревающейся ее части – группы светодиодов. В данном световом приборе не греются ни колба, ни цоколь (при условии нормального контакта с патроном). Выделение тепловой энергии происходит лишь на кристаллах светодиодов, от них и отводится тепло.

Почему выделяется тепловая энергия?

Конструкция LED

Как и у прочих осветительных элементов, коэффициент преобразования потребляемого электричества в свет у светодиодов не достигает 100%. Современные модели обладают КПД в районе 30–40%. Остальная часть потребленной электроэнергии рассеивается в виде тепла. Чтобы понять, почему греется светодиодная лампа, необходимо рассмотреть ее светоизлучающие элементы более детально.

Светодиоды имеют совершенно другой физический принцип работы, отличный от нити накала. Поэтому LED лампочки не греются подобно лампам накаливания и не разогревают вокруг себя пространство. Светодиод – это полупроводник, а тепло выделяется на кристалле полупроводникового перехода. Если не отводить тепло от этой площадки, то кристалл перегревается, что приводит к его выгоранию. В светодиодных лампочках используются мощные светодиоды, сконструированные с применением сразу нескольких кристаллов. Отвод тепла от таких излучающих свет диодов особо важен. Поэтому полупроводниковые кристаллы мощных светодиодов монтируются на специальной подложки из материалов с высоким показателем теплопроводности. Светодиоды, в LED лампе, устанавливаются на печатной плате, которая также имеет хорошие показатели проводимости тепла. Печатная плата крепится к радиатору. В целом вся эта конструкция обеспечивает эффективный отвод тепла от полупроводникового перехода и обеспечивает долгий срок службы светодиодов.

Из вышесказанного вытекает другой вопрос — какова температура нагрева светодиодной лампы? Этот показатель не имеет точной цифры, так как зависит от многих параметров: температуры окружающий среды, материалов радиатора, мощности лампочки, производителя, качества сборки. Если говорить о среднем значении, то этот показатель находится на уровне 65–70 градусов по шкале Цельсия.

Какие лампочки не нагреваются?

С точки зрения физики, любая лампочка – это преобразователь электрической энергии в световую. При этом в свет трансформируется не более 40% потреблённой мощности. Остальная энергия рассеивается в виде тепла в окружающее пространство. Отсюда следует, что лампы всех типов нагреваются во время работы и чем меньше КПД, тем больше тепла они выделяют. Например:

  • верхняя часть колбы лампы накаливания на 100 Вт разогревается до 280°C, а цоколь – до 70°C;
  • компактная люминесцентная лампа на 15 Вт имеет наибольший нагрев у основания, там, где находится спираль – до 130°C. Температура цокольной части, где расположена ЭПРА не превышает 60°C;
  • в светодиодных лампах больше всего нагревается металлопластиковая часть корпуса (до 60-75°C), которая служит радиатором для светодиодов.
Читайте также:
Нож Якут из подшипника своими руками

Немного о достоинствах LED-ламп

Лампочки на основе LED – самые экологически чистые и безопасные из всех представленных сегодня на рынке видов ламп. Они не содержат паров ртути, как люминесцентные, и не взрываются с разбрасыванием массы осколков, как современные низкокачественные лампочки накаливания.

Срок службы светодиодного светильника сегодня измеряется многими десятками тысяч часов. Поэтому его более высокая стоимость на длительном периоде времени компенсируется значительной экономией электроэнергии.

Почему и как сильно нагреваются светодиодные лампы

Современные осветительные приборы заметно отличаются от привычных ламп накаливания по всем параметрам. Особенно заметна разница у светодиодных экземпляров, ставших наиболее популярными и востребованными благодаря удачному сочетанию свойств. Одним из преимуществ ЛЕД устройств считается практически полное отсутствие нагрева, но этого не подтверждает ни теория, ни практика. Рассмотрим, насколько сильно нагреваются светодиодные лампы, и откуда в них берутся излишки тепла.

Несколько слов о конструкции

Устройство светодиодной лампы значительно отличается от традиционных конструкций светильников. LED конструкции представляют собой полупроводниковые приборы, в которых происходит выработка света посредством рекомбинации электронов на границе p-n перехода. Источник света — кристалл, состоящий из трех сверхтонких пластин, образующих p-n-p переход. При контакте электрона с границей каждый раз появляется фотон света. Для получения ровного и стабильного излучения необходимо создавать максимально тонкий средний слой, способствующий возникновению туннельного эффекта. Один такой кристалл способен выдавать ограниченное количество светового потока, но при соединении нескольких элементов излучение заметно усиливается.

Каждая лампа содержит несколько кристаллов (чипов). Они устанавливаются на печатной плате, представляющей собой алюминиевую пластину. Плата крепится к радиатору, обеспечивающему отвод тепла от кристаллов. Внутри радиатора установлен драйвер — блок питания, преобразующий сетевые 220 В переменного тока в 12 В постоянного напряжения. Конструкция драйвера основана на ШИМ-модуляции, что позволяет сделать схему миниатюрной, умещающейся в колбе.

Между радиатором и цоколем устанавливается пластиковое основание из материала, обладающего высокими диэлектрическими показателями. Чипы и печатная плата накрыты прозрачным (чаще всего, матовым) пластиковым колпаком, защищающим чипы от механических воздействий. Большинство ЛЕД приборов изготавливают в традиционном формфакторе ламп накаливания, что позволяет устанавливать их в старые и привычные люстры.

Почему выделяется тепловая энергия

Если коротко, причиной выделения тепловой энергии является КПД лампы. Он находится в пределах 30-40%, именно такая часть затраченной энергии уходит на излучение света. Остальные 60-70% энергии идут на нагрев кристалла.

Выделение тепловой энергии является побочным эффектом от взаимодействия электронов с дырками в зоне p-n перехода. Причем, степень тепловыделения возрастает с увеличением мощности кристаллов. Если светильник состоит из большого количества чипов, то и греются они, соответственно, сильнее. Излишки тепла отрицательно влияют на состояние кристаллов — они выгорают, теряют яркость свечения и в конце концов перестают излучать свет.

Важно! Эффективность работы чипа зависит от состояния стенок слоев, составляющих p-n переход. Чем меньше они имеют изъянов — микроскопических ямок, выбоин, неровностей — тем больше возникнет фотонов. Каждая выбоина на поверхности полупроводника создает помеху правильному движению электрона. Вместо образования фотона света выделяется некоторое количество тепла. Отсюда можно сделать вывод о качестве чипа и лампы в целом — чем лучше отработана технология сборки кристаллов, тем ярче будет свечение и меньше нагрев.

Тепло от кристалла передается алюминиевой плате, которая, в свою очередь, отдает энергию радиатору. Это и дает некоторый нагрев, свойственный всем светодиодным осветительным приборам. Необходимо учитывать, что сравнивать температуры ЛЕД и ламп накаливания нецелесообразно, поскольку они работают на разном принципе. Для первых нагрев является следствием неудачного контакта электронов с границей p-n переходов, вторые работают на принципе свечения нагревающейся вольфрамовой нити. Это означает, что тепло светодиодов — побочный эффект, а для ламп накаливания это одно из условий функционирования. Чем массивнее радиатор и плотнее контакт с ним платы, тем эффективнее будет рассеиваться нагрев кристаллов ЛЕД устройства.

Читайте также:
С чего начать дизайн кухни?

Какая температура нагрева считается нормальной

Говорить о норме нагрева светодиодных ламп сложно. Есть определенные пределы, которые принято считать рабочим диапазоном температуры ЛЕД конструкций — от 60° до 70°, хотя встречаются образцы с меньшим или большим нагревом. Показатели каждого вида светодиодов зависят от разных факторов:

  • мощность лампы;
  • количество чипов, установленных на плате;
  • размер и эффективность контакте радиатора с платой;
  • режим работы светодиодов.

Любая светодиодная лампа со временем теряет яркость свечения, или, как говорят, деградирует. Причиной этого явления считается перегрев всех чувствительных деталей. Важно, что проблемным узлом часто оказывается не чип, а другие элементы конструкции — например, детали драйвера. Нормой считается деградация в пределах 70%, большие показатели свидетельствуют о бракованной лампе или несоблюдении производителем требований технологии.

Светодиодные лампы

Примечательно, что разница рабочих температур двух светодиодов буквально в 5-10° вызовет ускорение деградации более нагретого прибора на 50-60%. Также необходимо знать, что существуют специальные модели светодиодных ламп, рабочая температура которых превышает 100°. Они используются в особых условиях и не продаются вместе с бытовыми типами светильников.

Есть ли лампочки, которые не нагреваются

Выбор лампы, которая гарантированно не перегреется и не доставит хлопот владельцу, является важной задачей. Если в квартире установлен натяжной потолок из ПВХ пленки, горячие поверхности светильников быстро выведут полотно из строя. Из всех существующих разновидностей светильников могут быть использованы только два типа:

  • люминесцентные;
  • светодиодные.

Степень нагрева обоих видов ламп примерно одинакова и зависит от многих факторов. При этом, люминесцентные светильники греются преимущественно в районе цоколя, тогда как эпицентр нагрева светодиодных ламп находится в районе установки чипов, т.е. в центральной части колбы. Это обстоятельство, в сочетании с другими преимуществами, вывело ЛЕД лампы в уверенные лидеры среди всех альтернативных вариантов.

Интересно! Отыскать лампу, которая совершенно не нагревается, невозможно. Однако, можно выбрать светильник с наименьшим показателем рабочей температуры. Как правило, это лампы, изготовленные известными и надежными производителями, обычно из Европы. Стоимость таких приборов довольно высока, но и степень надежности гораздо выше, чем у продукции большинства китайских фирм.

Существуют филаментные светодиодныве конструкции, которые реалистично имитируют обычные лампы накаливания. Они нагреваются меньше — средняя температура колбы составляет 50—60°, что достигается с помощью заполнения корпуса специальными газами. Для тех пользователей, кому важно найти самые «холодные» светодиодные приборы, можно посоветовать использовать филаментные виды светодиодных ламп. Все остальные разновидности практически не отличаются друг от друга по степени нагрева. Изготовители не указывают значение рабочей температуры, поэтому рекомендовать определенные модели невозможно.

Основные выводы

Светодиодные лампы нагреваются во время работы, как и все остальные виды светильников. Однако, степень нагрева значительно ниже, чем у других конструкций. Она зависит от различных факторов:

  • мощность светильника;
  • качество кристаллов;
  • режим работы лампы.

Конструкций, совершенно не греющихся во время работы, не существует. КПД любого светильника наглядно демонстрирует соотношение светового потока и рассеивания приложенной энергии, которая рассеивается в виде тепла. Светодиодные приборы обычно греются до 60-70°, что не представляет пожарной опасности и не выводит из строя полотно натяжного потолка. Свое мнение о нагреве светодиодных ламп излагайте в комментариях.

Почему на Светодиодная лампа сильно греется цоколь?

Если цоколь лампочки греется, то это связано с нарушенным контактом с патроном изделия, а не с принципом его работы. Кроме того, работающие светодиоды не нагревают пространство вокруг себя. Они выделяют тепло на кристалле полупроводникового перехода.

Читайте также:
Расчет тепловой нагрузки на отопление, расчетный показатель, все измерения своими руками: инструкция, фото и видео-уроки, цена

Какие лампы больше нагреваются?

в светодиодных лампах больше всего нагревается металлопластиковая часть корпуса (до 60-75°C), которая служит радиатором для светодиодов.

Почему сильно греется лампа?

Так почему же лампочка горячая? Ответ прост: потому что свет — горит! Именно поэтому летом, когда солнце светит, нам жарко. В лампочке нагревание происходит как раз из-за пружинки, которая изготовлена из специального металла — вольфрама.

Какие светильники не нагреваются?

Светодиодные (или LED) лампы – самые современные и надежные источники света. Они служат до 25 раз дольше ламп накаливания, а электричества потребляют почти в 8 раз меньше. Мгновенно загораются, практически не нагреваются и не мерцают.

Как сильно греется светодиодная лампа?

КПД светодиодной лампы в среднем составляет около 80%. То есть, лампа мощностью 10Вт, тратит 2 Вт на холостой нагрев ее элементов. При этом температура достигает не более 65 °C. Для сравнения – лампа накаливания нагревается до 265 °C.

Почему светодиодные лампочки нагреваются?

Выделение тепла в конструкции светодиодной лампы связано только с LED-элементами, поэтому цоколь и колба не нагреваются. Если цоколь лампочки греется, то это связано с нарушенным контактом с патроном изделия, а не с принципом его работы. Кроме того, работающие светодиоды не нагревают пространство вокруг себя.

Какие автомобильные лампы меньше нагреваются?

Ксеноновые лампы нагреваются на порядок меньше, чем галогенные. Дело в том, что у галогеновой лампы около 70% потребляемой энергии идет в тепло, и лишь 30% процентов преобразуется в световую энергию.

Что делать если гирлянда сильно нагревается?

  1. Если гирлянда новая, верните ее продавцу, указав на то, что она греется.
  2. Не используйте изделие в смотанном состоянии – при желании создать интересную фигуру, вы обеспечиваете близкое расположение светодиодов, которые при контакте друг с другом сильно нагреваются.

Почему греются лампочки в люстре?

Нагрев происходит по причине плохого контакта цоколя с патроном, либо плохой контакт провода с патроном. Для устранения причины нужно проверить контакт провода с патроном. Вторая причина нагрева заключается в том, что цоколь греется в процессе нагрева лампы.

Почему нагревается лампа накаливания?

Источником света у лампы накаливания является спираль. По которой проходит электрический ток заставляя вольфрамовую нить нагреваться примерно до 3000 градусов. От спирали нагревается и сама колба лампочки. Так как из колбы лампочки при ее изготовлении откачивают воздух, то сама колба нагревается гораздо меньше.

Какие лампочки лучше использовать в люстре?

В обзоре будут рассмотрено много разных типов ламп, однако мы кратко анонсируем: для дома лучше всего подойдут светодиодные лампочки, галогенки и привычные лампы накаливания. Они имеют надлежащий уровень безопасности для здоровья человека и практически всегда есть в точках продажи.

Какие лампы для чтения?

Для чтения лучше подбирать свет тёплых тонов – он действует на человека успокаивающее, помогает расслабиться и настраивает на комфортный отдых. Нейтральное освещение тоже будет вполне комфортно для читающего человека. Оно максимально близко к естественному солнечному свету, а потому заряжает бодростью и позитивом.

Какие лампочки лучше для настольной лампы?

Избегайте использования люминесцентных ламп. В настольной лампе для ребенка лучше всего использовать простую лампочку накаливания с белым матовым покрытием или светодиодную лампу. Подойдут лампы накаливания мощностью 40-60 Ватт или светодиодные аналоги. Такие лампы безопасны.

Сколько тепла выделяет светодиодная лампа?

Так, многие люди не понимают, сколько тепла генерируется современными светодиодами высокой яркости. Старомодная лампа накаливания мощностью 100 Вт производит около 5% видимого света, 83% инфракрасного излучения и 12% тепла. Эквивалентная ей яркая светодиодная лампа может производить 30% видимого света и 70% тепла.

Какая температура у лампы накаливания?

Однако неизвестны твердые вещества, способные без разрушения выдержать температуру фотосферы Солнца, поэтому рабочие температуры нитей ламп накаливания лежат в пределах 2000—2800 °C.

Какая температура галогенной лампы?

Галоге́нная (галоге́новая) ла́мпа — лампа накаливания, в баллон которой добавлен буферный газ: пары галогенов (брома или иода). Буферный газ повышает срок службы лампы до 2000-4000 часов и позволяет повысить температуру спирали. При этом рабочая температура спирали составляет примерно 3000 К.

Читайте также:
Напольная плитка в прихожую

Греются ли Светодиодные Лампы Для Дома Энергопотребление ламп

Это второй недостаток. Светодиодные лампы по всем параметрам больше условно аналогичных ламп накаливания. Они шире, длиннее, тяжелее.

Причина этого технологическая. Лампы накаливания не боятся высокой температуры, они могут нагреваться вплоть до температур конструктивного разрушения, когда стекло или клей перестают быть твердыми. Поэтому их обычный нагрев до 100-300 градусов практически никак не сказывается на функциональности (конечно, если не касаться вопросов пожаробезопасности).

С другой стороны, светодиоды не должны нагреваться очень сильно, т.к. при нагреве существенно падает их эффективность и усиливается процесс выгорания — они тускнеют. Поэтому их нужно охлаждать, поэтому в светодиодных лампах есть радиатор. И чем мощность лампы выше, тем радиатор будет больше.

Какие лампочки не нагреваются: светодиодные, люминесцентные Применение светодиодных или люминесцентных лампочек с повышенной эффективностью работы позволяет снизить затраты электроэнергии с одновременным сокращением теплового излучения. Спрашивайте, я на связи!

Лампа накаливания или светодиодная лампа? Выбираем между сохранением зрения и экономичностью / Комфортный дом и бытовая техника / iXBT Live

Не любую лампу можно заменить светодиодной

В некоторых случаях большой размер и радиатор приводят к тому, что отдельным лампам невозможно правильно сделать светодиодный аналог. Это также нужно записать в минусы светодиодных ламп.

Например, для свечи с цоколем миньон (E14) мощностью 60 ватт сделать достойный светодиодный аналог практически нельзя — физически не хватит места для размещения нужного радиатора, а уменьшение радиатора приведёт к перегреву.

Т.е. такая светодиодная лампа (даже если её сделать) будет либо очень большой, либо будет недолго работать из-за перегрева. В первом случае лампа не поместится в предназначенные для неё светильники, а во втором — с учётом срока службы и цены более выгодным может оказаться использование энергосберегающих или даже старых ламп накаливания.

Хотя несомненно, что спрос на лампы «чтобы была маленькая и мощная» есть. Как ответ на этот спрос на российском рынке появилось много предложений светодиодных свечей с цоколем Е14 мощностью по 6 ватт и даже по 8. Но чудес не бывает. Это почти всегда в некотором роде маркетинг. Будьте внимательны при покупке таких светодиодных ламп!

Почему перегреваются лампы – 5 основных причин

Если предыдущая лампа отслужила на этом же месте в светильнике весь положенный срок, а новая быстро перегорела, то высока вероятность, что вам попался бракованный экземпляр.
Нередко, от этого страдает целая партия. И вы, купив набор освещения для всей квартиры, можете безуспешно искать причину быстрого выхода из строя, хотя ответ простой – бракованные лампы.

Каждый светильник, при производстве, в зависимости от его конструкции, материалов изготовления и места установки, рассчитывается под определенный тип лампы, под определенный температурный режим работы.

Как определить, что перегрев лампы вызван недостаточным отводом тепла

Сравнение лампы накаливания, люминесцентной и светодиодной ламп по температуре нагрева и энергопотреблению | Заметки электрика С помощью цифрового мультиметра, подключенного последовательно в цепь каждой лампы, произведем измерение потребляемого тока, а затем косвенным путем рассчитаем их мощность и сравним с заявленной по паспорту. Спрашивайте, я на связи!

Недостатки светодиодных ламп. Что в них плохого?

Нагрев элементов лампы из-за плохих контактов

Как диагностировать и исправить плохой контакт в светильнике

Как определить, что на лампы поступает повышенное напряжение

Проще всего, в случае сомнений, достаточно замерить реальные показатели электрической сети. Как легко измерить напряжение самому с помощью мультиметра и вообзе как им пользоваться я рассказывал совсем недавно.

Если окажется, что у вас действительно высокое напряжение – лучше сразу обращаться к обслуживающей электросети дома организацию – Управляющую Компанию, ЖЭУ и т.д. Нередко к этому приводят серьезные, системные проблемы, справится с которыми своими силами вы вряд ли сможете.

Какие лампы слабо нагреваются при своей работе?

Альтернативой стали люминесцентные лампочки, массово появившиеся в 70-х гг. прошлого века, а затем частично вытесненные светодиодными.

Читайте также:
Плюсы и минусы гаража на винтовых сваях

Светодиодные источники света

  • увеличенный ресурс, доходящий до 50 тыс. часов;
  • разнообразие вариантов колбы и цоколя;
  • стойкость корпуса к ударным нагрузкам;
  • стабильная яркость свечения, не зависящая от напряжения в линии питания;
  • универсальность конструкции и возможность использования в любых светильниках;
  • низкий расход электроэнергии (на 90% ниже, чем при использовании изделий с вольфрамовыми нитями накаливания);
  • равномерный световой поток, формируемый светодиодами.
  • пульсация света при использовании низкокачественных драйверов;
  • повышенная себестоимость производства;
  • сложность утилизации;
  • невозможность формирования расширенного светового потока из-за установки платы с элементами управления;
  • не поддерживается регулировка яркости свечения (за исключением некоторых моделей);
  • матовая колба чужеродно смотрится в хрустальных или стеклянных плафонах;
  • ограниченный температурный диапазон эксплуатации;
  • невысокая максимальная мощность.

Люминесцентные источники света

Срок службы не превышает 5 лет при условии соблюдения допустимого количества розжигов (включений).

  1. С повышенным давлением газовой среды в колбе. Предназначены для использования вне закрытых помещений и обладают повышенной мощностью. Устанавливаются в прожекторах или иных светильниках с направленным излучением. Световой поток неприятен для человеческого глаза, позволяет подсвечивать объекты, расположенные на большом расстоянии от места установки излучателя.
  2. С пониженным давлением газа, отличающиеся уменьшенной мощностью и ориентированные на использование внутри помещений. Для заполнения колбы используют смесь инертного аргона с парами ртути. Могут применяться для освещения жилых, офисных или производственных помещений. Подразделяются на несколько групп в зависимости от конфигурации колбы и схемы зажигания разряда.
  • повышенная световая отдача по сравнению с лампочками накаливания;
  • увеличенный КПД (не менее 10%);
  • отсутствие мерцания при работе и увеличенный ресурс;
  • излучение не вызывает раздражения сетчатки глаза;
  • возможность создания изделий с различным цветом свечения.
  • прямая зависимость ресурса от количества включений;
  • повышенная себестоимость изготовления;
  • мерцание света при удвоенной частоте тока;
  • искажение восприятия цвета предметов интерьера из-за неравномерного распределения спектра свечения;
  • постепенное выгорание люминофора, негативно влияющее на эффективность работы лампы;
  • необходимость соблюдения техники безопасности при хранении или утилизации;
  • необходимость установки в светильнике электронного блока для пуска и регулировки режимов работы люминесцентной лампы;
  • наличие постороннего шума от дросселя, используемого в базовой системе регулировки (элемент отсутствует при использовании электронного блока);
  • риск попадания в атмосферу помещения паров ртути при разрушении колбы;
  • низкий коэффициент мощности (дефект частично устраняется применением электронной пускорегулирующей аппаратуры).

Греется светильник точечный в потолке из ПВХ Помимо низкой теплоотдачи LED лампы выделяются минимальным потреблением электроэнергии, незначительной восприимчивостью к циклам включений выключений и высоким сроком службы от 20 000 до 100 000 тысяч часов работы. Спрашивайте, я на связи!

Семь вопросов о светодиодных лампах

Пять лет назад светодиодные лампы были технической диковинкой, сегодня светодиодные лампы продаются в каждом магазине товаров для дома, через пять лет подавляющее большинство квартир скорее всего будут освещаться светодиодными лампами.

В этой статье я постараюсь ответить на вопросы, которые чаще всего возникают у тех, кто впервые сталкивается со светодиодными лампами.

1. Зачем покупать светодиодные лампы?

Обычные лампочки отлично светят, но очень энергонеэффективны — 95% энергии у них превращается в тепло. Забавный факт: после запрета продажи лампочек, мощнее 100 Вт, производители, как ни в чём не бывало, продолжают их производить, но называют не лампочками, а «теплоизлучателями» и по сути они правы.

Современные светодиодные лампы потребляют в 8-10 раз меньше энергии, чем лампы накаливания при том же световом потоке, а значит при освещении светодиодными лампами за освещение можно будет платить в 8-10 раз меньше.

Я сделал расчёт стоимости освещения двухкомнатной квартиры обычными и светодиодными лампами.

Конечно, расчёт очень приблизительный. Тем не менее 3-5 тысяч рублей в год — вполне реальная экономия для средней квартиры. Обратите внимание на время горения ламп. Производители обещают 1000 часов работы лампы накаливания (в реальности часто лампочки перегорают гораздо раньше), но даже если лампы проработают свои 1000 часов, их придётся поменять в коридоре и комнате дважды за год, а в кухне и спальне один раз. При средней стоимости лампы 30 рублей на это уйдёт ещё 690 рублей.

Читайте также:
Навесы над входом из профнастила

Светодиодные лампы не придётся менять каждые полгода. Производители обещают 25-50 тысяч часов работы. Это более 11-22 лет при ежедневном использовании по 6 часов.

Комплект светодиодных ламп для этой усреднённой квартиры обойдётся в 4380 рублей (7 ламп E27 6Вт по 280 руб, 11 свечек 4Вт по 220 руб) и окупятся они менее, чем за год.

Хорошие светодиодные лампы дают такой же комфортный свет, как лампы накаливания и вы не сможете отличить их свет от света ламп накаливания.

60-ваттная лампа накаливания при понижении напряжения в сети до 207 В начинает светить, как 40-ваттная, а если напряжение упадёт до 180 вольт (что часто бывает в сельской местности) 60-ваттная лампа «превращается» в 25-ваттную. Светодиодная лампа при любых напряжениях светит с одинаковой яркостью и не боится скачков напряжения.

В отличие от ламп накаливания, светодиодные лампы имеют небольшой нагрев. Лампы не греют помещение, когда в нём и так жарко. Ребёнок не обожжётся о лампочку в настольной лампе.

А ещё светодиодные лампочки дают свободу и комфорт. Больше не надо беспокоиться об экономии электричества: когда лампочка потребляет 6 Вт, а не 60, её можно просто не выключать. Раньше я всегда выключал свет в коридоре, теперь он горит всегда, когда я дома. Так удобней.

И ещё один, последний аргумент в пользу покупки светодиодных ламп. Не относитесь к ним, как к расходному материалу. Вы покупаете их надолго. Относитесь к ним так же, как к люстре или светильнику, в которые вы их установите, ведь скорее всего когда-нибудь вы замените их вместе, потому, что светодиодные лампы так и не перегорят.

2. Светодиодные и энергосберегающие лампы это одно и то же? И если нет, какие лучше?

Конечно, светодиодные лампы можно считать энергосберегающими, однако, в русском языке слово «энергосберегающие» закрепилось за компактными люминесцентными лампами (КЛЛ), а КЛЛ и светодиодные лампы — совсем разные вещи.

Светодиодные лампы гораздо лучше КЛЛ по нескольким причинам:

• cветодиодная лампа не содержит опасных веществ, а в колбе любой КЛЛ содержится ртуть;
• cветодиодная лампа потребляет меньше энергии при том же световом потоке;
• cветодиодная лампа мгновенно зажигается на полную яркость, а КЛЛ плавно набирает яркость от 20% до 100% за минуту при комнатной температуре и гораздо медленнее при низких температурах;
• У КЛЛ плохой спектр, состоящий из пиков нескольких цветов. Спектр светодиодной лампы гораздо ближе к естественному освещению и свету лампы накаливания.

3. Что там светится?

В 1923 году советский физик Олег Лосев обнаружил электролюминесценцию полупроводникового перехода. Первые светодиоды, использующие этот принцип, так и называли — «Losev Light» (свет Лосева). Первым появился красный светодиод, затем в начале 70-х годов появились жёлтые и зеленые светодиоды. Cиний светодиод был создан в 1971 Яковом Панчечниковым, но он был чрезвычайно дорог. В 1990 году японец Суджи Накамура создал дешёвый и яркий синий светодиод.

Ещё 20 лет назад считалось, что белый светодиод создать невозможно, однако, после появления синего светодиода стало возможным делать белые источники света с тремя кристаллами (RGB).

В 1996 году появились первые белые люминофорные светодиоды. В них свет ультрафиолетового или синего светодиода преобразуется в белый с помощью люминофора.

К 2005 году световая эффективность таких светодиодов достигла значения 100 лм/Вт и более. Это позволило начать использовать люминофорные светодиоды для освещения, ведь светодиод является одним из самых экономичных источников света.

4. Какие бывают светодиодные лампы?

Светодиодные лампы выпускаются в различных корпусах с разными типами цоколей. Это и обычные «груши», «свечки» и «шарики» с цоколями E27 и E14, и «зеркальные» лампы R39, R50, R63 и софиты с цоколями GU10 и GU5.3, капсульные лампы с цоколями G4 и G9, лампы для потолков с цоколем GX53.

В светодиодных лампах используются различные типы светодиодов. В первых светодиодных лампах использовались обычные светодиоды в пластиковом корпусе.

Сейчас мощные светодиоды в корпусах используются только в некоторых лампах.

Читайте также:
Расчет звукоизоляции

В большинстве современных ламп используются бескорпусные светодиоды и светодиодные сборки.

В последнее время всё чаще используются светодиодные излучатели COB (chip on board). В них множество светодиодов покрыты единым люминофором.

Разновидность COB — светодиодные нити (led filament). В них множество светодиодов размещено на стеклянной полоске, покрытой люминофором.

В самом последнем поколении ламп Crystal Ceramic MCOB излучатели располагаются на круглых пластинах из прозрачной керамики.

Светодиодные лампы выпускаются с разной цветовой температурой света: 2700К — жёлтый свет, как у ламп накаливания, 3000К — чуть боле белый комфортный свет, 4000К — белый свет, 6500К — холодный белый свет. На мой взгляд для дома больше подходят лампы с цветовой температурой 2700-3000К.

5. Всегда ли светодиодную лампу можно просто вкрутить вместо обычной?

Нет, не всегда. Есть две проблемы, с которыми можно столкнуться:

• Работа с выключателем, имеющим индикатор. Большое количество светодиодные ламп не могут работать с выключателями, имеющими индикатор. Они вспыхивают или слабо горят, когда выключатель выключен. Это происходит из-за того, что слабый ток постоянно течёт через лампу. Выхода из этой ситуации два: или использовать лампы, корректно работающие с такими выключателями или отключать индикатор внутри выключателя.

• Диммирование. Большинство светодиодных ламп не может работать с регуляторами яркости (диммерами), но существуют специальные диммируемые светодиодные лампы (как правило они гораздо дороже обычных). В отличие от ламп накаливания, при снижении яркости светодиодная лампа не меняет цвет освещения (у обычной лампы он желтеет). Многие диммируемые светодиодные лампы диммируются не до нуля, а лишь до 15-20% полной яркости.

6. Все ли светодиодные лампы хорошие и если нет, чем хорошие отличаются от плохих?

В обычных лампах накаливания всё просто: колба и вольфрамовая нить. Светодиодная лампа устроена гораздо сложнее и её качество зависит от качества светодиодов, люминофора и электроники.

Есть три важных параметра, влияющих на качество света, которое даёт лампа:

• Пульсация света. Многие некачественные лампы имеют высокий уровень пульсации (мерцания) света. Такой свет визуально некомфортен и человек от него быстро устаёт. При переводе взгляда с одного предмета на другой виден стробоскопический эффект (видно как бы несколько предметов вместо одного). Человеческий глаз воспринимает пульсацию более 40%. Есть два способа проверить наличие пульсации света — карандашный тест (берём обычный длинный карандаш за кончик и начинаем быстро-быстро двигать им по полукругу туда и обратно. Если отдельных контуров карандаша не видно, — мерцания нет, если же видно «несколько карандашей» — свет мерцает) и проверка с помощью камеры смартфона (если посмотреть на свет через камеру смартфона, как правило при мерцании света по экрану будут идти полосы, причём чем они ярче, тем мерцание сильней). Лампы с видимой пульсацией нельзя использовать в жилых помещениях.

• Индекс цветопередачи (CRI). Спектр света светодиодной лампы отличается от спектра солнечного света и света обычной лампы накаливания. Хоть свет и выглядит белым, некоторых цветовых компонентов в нём больше, а некоторых меньше. CRI показывает, насколько равномерен уровень разных цветовых компонентов в свете. При низком CRI света хуже видны оттенки. Такой свет визуально неприятен, причём понять, что в нём не так, очень сложно. У ламп накаливания и солнца CRI=100, у обычных светодиодных ламп он больше 80, у очень хороших больше 90. Лампы с CRI ниже 80 в жилых помещениях лучше не использовать.

• Угол освещения. Светодиодные лампы типа «груша» бывают двух видов. У первых защитный колпак имеет форму полусферы, имеющей такой же диаметр, как и корпус. Такие лампы совсем не светят назад и если в люстре они светят вниз, потолок будет оставаться тёмным, что может быть визуально некрасиво. У второго вида ламп прозрачный колпак имеет диаметр больше корпуса и лампа немного светит и назад. Лампы на светодиодных нитях или прозрачных дисках имеют такой же большой угол освещения, как обычные лампы накаливания.

Читайте также:
Постройка мансарды своими руками в частном доме, строим поэтапно, как построить, строительство

Галогенные софиты дают узкий луч света с углом освещения около 30 градусов, а большинство светодиодных софитов светят рассеянным светом с углом около 100 градусов. Такие лампочки в подвесном потолке «слепят» из-за слишком широкого угла. Только некоторые светодиодные софиты имеют линзы и такой же узкий угол освещения, как у галогенных ламп.

И ещё три проблемы, с которыми можно часто столкнуться у светодиодных ламп:

• Несоответствие светового потока и эквивалента заявленным значениям. К сожалению, часто на упаковке светодиодных ламп пишут завышенные значения светового потока и эквивалента. Можно встретить лампы, на которых указан световой поток 600 Лм и то, что лампа заменяет 60-ваттную ламу накаливания, а по факту она светит только, как 40-ваттная лампа.

• Несоответствие цветовой температуры заявленной. Очень часто встречаются лампы, цветовая температура света которых отличается от того, что обещает производитель. Вместо 2700К можно встретить 3100К, а вместо 6000К даже 7200K.

• Преждевременный выход ламп из строя. Производители указывают срок службы светодиодных ламп от 15000 до 50000 часов, по факту же лампы иногда ломаются через несколько месяцев работы.

7. Как выбрать качественные светодиодные лампы?

На Российском рынке представлены лампы нескольких десятков брендов. Большинство из них — российские бренды, изготавливающие лампы в Китае на заказ. Многие думают, что раз лампы китайские, лучше и дешевле их покупать в китайских интернет-магазинах, но это большая ошибка. К сожалению, подавляющее большинство ламп из китайских магазинов очень плохого качества. Мощность и световой поток у них гораздо ниже обещанных, индекс цветопередачи (CRI) низкий, у многих ламп присутствует пульсация, порой доходящая до 100%, цветовая температура не нормируется (китайцы часто пишут «тёплый белый свет 2700-3500К» и что будет по факту никто не знает), никакой гарантии на такие лампы нет и при выходе из строя поменять их не получится. Я протестировал несколько десятков ламп из китайских интернет магазинов и хорошая среди них была всего одна, при этом стоила она дороже, чем аналогичные лампы в России.

Мне известны только четыре бренда, которые не завышают световой поток и эквивалент на упаковке. Это Ikea, Osram, Philips и Diall, поэтому при покупке ламп всех остальных брендов лучше берите лампы «с запасом». Если Вам нужно заменить 40-ваттную лампочку, лучше берите ту, на которой написано «эквивалент лампы накаливания 60 Вт».

Если при покупке есть возможность включить лампу, убедитесь, что она не мерцает с помощью карандашного теста или смартфона. Лампы с недопустимой пульсацией попадаются даже у таких брендов, как Osram.

Если мерцание обнаружилось уже дома, смело возвращайте лампу — по российским законам, светодиодные лампы можно возвращать в магазин в течение 14 дней со дня покупки.

Обращайте внимание на сроки гарантии (гарантия на лампы бывает от года до пяти лет) и сохраняйте чеки. Лампы должны обменивать в местах их приобретения.

О том, что собой представляют светодиодные лампы разных моделей, какой они дают реальный световой поток, какие лампы накаливания они способны полноценно заменить, какие у них CRI, цветовая температура и уровень пульсации, могут ли они корректно работать с выключателями, имеющими индикатор, я пишу в блоге своего проекта Lamptest на Geektimes. Я регулярно тестирую светодиодные лампы и публикую результаты. Сейчас протестировано уже более 400 моделей ламп.

Что касается «М.Видео», то светодиодные лампы там появились лишь недавно и очень хочется надеяться, что в ближайшее время их ассортимент в магазинах сети расширится.

Уже больше года в моей квартире нет других источников света, кроме светодиодных. Это даёт хорошую экономию электричества, позволяет забыть о частой замене ламп и даёт дополнительную свободу — например я часто не выключаю свет в коридоре, ведь лампа потребляет всего 7 Вт.

Надеюсь, скоро светодиодное освещение появится и в вашем доме. Но перед этим мы сделаем один интересный пост с одного из производств, с которым работает компания М.Видео.

© 2016, Алексей Надёжин специально для

Ссылка на основную публикацию