Про светодиоды для чайников

Что такое светодиод (LED)

В повседневной жизни мы очень часто встречаемся с аббревиатурой LED, например, когда речь заходит о дисплеях. Что же это такое? Так вот, с английского LED расшифровывается как Light Emitting Diode, что можно дословно перевести, как “диод, испускающий свет”. Теперь все становится намного понятнее. Значит это все-таки один из видов диода, а точнее даже его особый вид. Давайте попробуем разобраться, где в повседневной жизни мы встречаемся с такими диодами и как вообще они работают.

Чаще всего можно увидеть эти 3 буквы при просмотре характеристик техники, которая имеет дисплеи. Например, матрицы телевизоров, телефонов и мониторов довольно часто оснащаются именно LED подсветкой. Если говорить проще, то LED — это световой диод, или светодиод. Уже проще, верно? Так как же он работает?

Почему светодиоды вообще работают?

Начну с того, что светодиод очень напоминает диод с PN переходом. Он работает по такому же принципу, то есть пропускает ток в одном направлении и не пропускает в другом. Зачем это нужно? Если электроны будут двигаться в одном направлении, то будут создавать ток, который в дальнейшем и будет источником света.

Конструкция DIP-светодиода

Теперь подробнее именно про светодиод. Он устроен не сильно сложнее простого диода. Внутри находится полупроводник с высокой степенью легирования. Спектр излучения зависит от степени легирования и материала, из которого изготовлен полупроводник. Для того, чтобы светодиод работал, нужно воздействовать на него извне, то есть к полюсу p подается напряжение (это называется прямым смещением).

Далее все происходит следующим образом. Диод смещен в прямом направлении, поэтому электроны рекомбинируют с дырками из валентной зоны и высвобождается энергия, которой достаточно для производства фотонов. Эти самый фотоны излучают свет одного света (монохромный). Правда, слой очень тонкий, и поэтому большая часть фотонов покидает переход, тем самым создавая поток света из множества основных цветов видимого спектра.

А в чем же отличие от обычного диода?

Оказывается, световой диод все же отличается от обычного (сигнального) диода. Основное отличие, конечно же, заключается именно в конструкции. Так, у светодиода есть специальная полусферическая защита, которая хранит его от ударов и других механических воздействий извне. Также очень любопытен тот факт, что светодиодный переход самостоятельно излучает довольно мало фотонов. Именно по этой причине корпус светодиода специально делают из эпоксидной смолы, которая позволяет направить фотоны, идущие в другие стороны строго вверх.

Встречаются иногда и очень необычные формы светодиодов. Среди них и прямоугольная, и цилиндрическая и даже форма в виде стрелки. Все зависит от того, куда нужно концентрировать свет, а это зависит от цели, для которой этот светодиод создается.

В чем самые главные плюсы технологии LED?

Одной из главных особенностей светодиодов является его высокий КПД. Дело в том, что обычная лампа накаливания при работе выделяет очень много тепла, а вот светодиод, напротив, остается достаточно холодным. Все это происходит из-за того, что он в большую часть света производит именно в видимом для человека спектре и не расходует энергию на ненужные длины волн. Это позволяет технологии LED серьезно доминировать над уже устаревшими лампами накаливания. Кроме того, светодиоды гораздо меньше по размеру и их можно располагать благодаря этому как угодно и где угодно.

Можно выстраивать из них целые фигуры и даже программировать последовательность того, как они загорятся с помощью мини-компьютеров. Таким образом, это дает очень большой толчок для дальнейшего развития и совершенствования, но довольно лирики.

Какие цвета может излучать светодиод?

Многие заблуждаются в том, что светодиоды светят тем цветом, в который окрашен их корпус, хотя как мы уже говорили ранее, для регулировки цвета и регулировки его интенсивности нужно подбирать подходящий полупроводниковый материал. Именно он является определяющим фактором, если нужно подобрать цвет. Однако, светодиоды могут излучать не все цвета и есть точный спектр, который получить возможно.

Наиболее распространенные цвета — это красный, желтый, зеленый и оранжевый. Это все потому, что их легче производить, а соответственно и стоят они в разы дешевле ново появившихся синих и белых. Взгляните на эту таблицу, чтобы понять, какому напряжению соответствуют итоговые цвета:

Цвета, которые бывают у светодиодов

Давайте теперь подробно остановимся на конкретных материалах, которые влияют на выбор цвета:

  • арсенид галлия для получения инфракрасного (например, в пульте);
  • фосфид арсенида, чтобы получить оранжевый и весь спектр от красного и до инфракрасного;
  • фосфид арсенида галлия алюминия для ярко-красного, красно-оранжевого и даже желтого;
  • фосфид алюминия-галлия для зеленого;
  • фосфид галлия для желтого, зеленого и красного;
  • нитрид галлия, чтобы получить изумрудно-зеленый;
  • нитрид галлия-индия для бирюзового, синего и ближнего ультрафиолетового;
  • карбид кремния для синего;
  • селенид цинка и опять для синего;
  • нитрид алюминия-галлия для ультрафиолета.
Читайте также:
Производство огнестойких красок для металлоконструкций Москва

Взглянув на этот список можно заметить, что для некоторых цветов подойдет сразу несколько полупроводников и это действительно так. Это уже сам производитель выбирает, какие полупроводники ему выбрать. Может быть, ему легче достать именно этот тип, а не другой, или он просто дешевле. Да, вот так много разных материалов нужно, чтобы создать даже очень простенький современный телевизор, например.

Подробнее про работу светодиода

Теперь, когда мы знаем достаточно много про работу светодиода, давайте еще немного поговорим о том, как он устроен изнутри. Каждый светодиод состоит из следующих деталей:

  • катод;
  • анод;
  • кристалл;
  • отражатель;
  • рассеиватель.

Каждая из этих деталей очень важна для работы светодиода. Но давайте поговорим о том, что каждый из них делает конкретно. Самые главные детали внутри светодиода — это катод и анод.

Светодиод (или led по другому)

Электроны идут от катода к аноду при подаче напряжения на устройство, благодаря чему электроны идут к PN переходу и там занимают свободные места. После этого электроны переходят на новый энергетический уровень, выделяется множество фотонов. Как мы уже говорили ранее, фотоны направляются вверх с помощью отражателя и рассеивателя.

Чем отличаются разные светодиоды и зачем нужен каждый из них?

Если говорить об основных видах LED или светодиодов, то это конечно же осветительные (используются для яркого света в помещении) и индикаторные (они для декоративных целей, например, чтобы украсить стадион или телебашню). Однако светодиоды также различают по типу конструкции:

    DIP светодиоды. Это довольно простые и не очень эффективные индикаторные светодиоды. Зато стоят они достаточно дешево. Линза у них цилиндрической формы, размер, как правило, немаленький, освещение со временем ухудшается на 30%, а угол распространения света всего 120 градусов.

Как можно подсоединять светодиоды

Когда мы уже знаем достаточно много о светодиодах, давайте узнаем, как можно объединять. Для этого нам нужно их соединить. Но каким образом можно это сделать и какой способ будет лучшим?

Попробуем подсоединить последовательно

Последовательное соединения нужно, если нужно массово увеличить количество освещенности (например, регулировка уровня яркости). Подсоединив светодиоды таким способом, они будут работать как один. Рекомендуем при этом использовать в цепочке светодиоды одного типа и даже одного цвета.

Последовательное соединение LED

Несмотря на то, что ток внутри светодиодов при последовательном подключении идет один и тот же, при установке резисторов нам точно придется учитывать, что напряжение тоже будет падать последовательно. Например, исходное напряжение равно 1.2 В на один светодиод, но тогда напряжение на всех n светодиодах будет уже n * 1.2. То есть если светодиодов 3, то общее падение будет уже 3.6 В. Так как же тогда посчитать падение напряжения на резисторах? Все очень просто. Давайте предположим, что все светодиоды будут питаться от одного и того же логического устройства с напряжением 5 В. Тогда:

Пример соединения LED

Обращаю ваше внимание, что среди резисторов E12 не встречается сопротивления 140 Ом, поэтому придется вариант с 150 Ом.

Как же теперь включать и выключать светодиоды?

Когда мы знаем уже достаточно много о светодиодах, пришло время узнать, как можно легко управлять их включением и выключением. Здесь схемы будут немного сложнее. Для управления мы будем использовать выходные каскады CMOS и TTL (они регулируют напряжение при высоком кпд и почти без искажений). Дело в том, что они могут использоваться как источники, так и как приемники полезного тока. А это как раз дает нам возможность пользоваться ими, как включателями и выключателями. Взгляните на эти примеры:

Светодиод горит и не горит

Теперь вы знаете достаточно много про светодиоды. Если вам понравилась статья и вы хотели бы узнать о них еще больше, то мы будет очень рады узнать от вас эту информацию в комментариях.

Светодиоды можно купить на алишке, вот по этой ссылке.

Вот в передаче «Галилео» подробно рассказывают про светодиоды, можете посмотреть:

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)— полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.

Читайте также:
Плетеная мебель из искусственного ротанга

Светодиоды

Достоинства:

1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
4. Миниатюрность
5. Долгий срок службы (долговечность)
6. Высокий КПД,
7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
8. Большое количество различных цветов свечения, направленность излучения
9. Регулируемая интенсивность

Недостатки:

1. Относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
2. Малый световой поток от одного элемента
3. Деградация параметров светодиодов со временем
4. Повышенные требования к питающему источнику

Внешний вид и основные параметры:

У светодиодов есть несколько основных параметров:

1. Тип корпуса
2. Типовой (рабочий) ток
3. Падение (рабочее) напряжения
4. Цвет свечения (длина волны, нм)
5. Угол рассеивания

В основном, под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод – полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.

В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.

Схема включения и расчет необходимых параметров:

Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод (“минус”), а другой – анод (“плюс”).

Подключение счетодиода

Светодиод будет “гореть” только при прямом включении, как показано на рисунке

При обратном включении светодиод “гореть” не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Зависимости тока от напряжения

1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Чтобы правильно подключить светодиод в самом простом случае, необходимо подключить его через токоограничивающий резистор.

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

То есть, надо взять резистор сопротивлением 100 Ом

P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов

Расчет аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Читайте также:
Немезия: выращивание из семян. Особенности ухода за немезией

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:
1-ый красный напряжение 3 вольта 20 мА
2-ой зеленый напряжение 2.5 вольта 20 мА
3-ий синий напряжение 3 вольта 50 мА
4-ый белый напряжение 2.7 вольта 50 мА
5-ый желтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1-ый и 2-ой
2) 3-ий и 4-ый
3) 5-ый

рассчитываем для каждой ветви резисторы:
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.

Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

RGB-светодиод

Полноцветный светодиод или по другому RGB-светодиод – Red, Green, Blue. Смешивая эти три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность (Red: 100%, Green: 100%, Blue: 100%), то получится свечение белого цвета. Если зажечь только два (Red: 100%, Green: 100%, Blue: 0%), то будет светиться желтый цвет.

Конструктивно, RGB-светодиод состоит из трех кристаллов под одним корпусом и имеет 4 вывода: один общий и три цветовых вывода.
RGB-светодиоды бывают:
1. С общим анодом (CA)
2. С общим катодом (CC)
3. Без общего анода или катода (6 выводов). Как правило в SMD-исполнении.

Структурная схема RGB-светодиода

Самый длинный вывод RGB-светодиода, обычно является общим (анодом или катодом).

При подключении данных светодиодов, следует учесть, что напряжение, подаваемое для свечения цвета может быть разным для разных цветов.
К примеру, возьмем 5мм светодиод MCDL-5013RGB (I=20мА):
Ured = 2.0 Вольт
Ugreen = 3.5 Вольт
Ublue = 3.5 Вольт

Свечение RGB-светодиода

Также следует отметить то, что для некоторых типов RGB-светодиодов необходимо использовать рассеиватель, иначе будут видны составляющие цвета.

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем, что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит при немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Sivent Опубликована: 2008 г. 0 2

Вознаградить Я собрал 0 1

Как устроен и работает светодиод

Светодиод

С момента открытия монохромных красных светодиодов в 1962 году началось активное развитие полупроводниковых источников света.

Открытие синего и белого диодов перевело технологию на новый уровень.

С тех пор постоянно меняется устройство светодиода, его характеристики и конструкция. Сейчас они широко используются в светотехнике, электронике и других областях.

Читайте также:
Подвал из бетона своими руками — 4 этапа строительства собственного хранилища

Что такое светодиод простыми словами

Светодиодная лента

Светодиод – это полупроводниковое устройство, создающее излучение при прохождении через него электрического тока. Из чего состоит светодиод: из кристалла, заключенного в защитный корпус с выводами. Кристалл расположен на непроводящей подложке и излучает определенный цвет. Для получения нужного свечения используются химические составы из различных полупроводников и люминофоры.

Кристалл состоит из двух и более полупроводников разного типа проводимости. Принцип работы светодиода следующий – в прямом направлении через него пропускают электрический ток. В электронно-дырочном переходе на границе двух веществ происходит движение электронов и дырок, в результате чего выделяется энергия в виде кванта света и прибор начинает светить.

  • высокая светоотдача;
  • высокая механическая прочность и виброустойчивость;
  • долгий срок работы;
  • малый нагрев;
  • от количества циклов включения-выключения не зависит срок работы;
  • различный спектр белых светодиодов – от 2700 К до 6500 К;
  • спектральная чистота, полученная благодаря принципу устройства;
  • отсутствует задержка при включении;
  • широкий диапазон углов излучения (от 15 градусов до 180 градусов);
  • электрическая безопасность, так как не требуются высокие напряжения;
  • отсутствие чувствительности к низким температурам;
  • надежность;
  • разнообразие форм;
  • экономичность;
  • экологичность, ввиду отсутствия в конструкции светодиода ртути и других вредных компонентов в составе светоизлучающего диода.
  • нельзя допускать работы при высоких температурах – кристалл начинает деградировать;
  • высокая стоимость готового изделия.

Светодиодная лента

Применение:

  • уличное, домашнее и производственное освещение;
  • индикация;
  • уличная реклама, бегущие строки;
  • фонари и светофоры;
  • подсветка экранов телефона, телевизора, компьютера и других жидкокристаллических дисплеев;
  • игрушки, значки и другие развлекательные элементы;
  • диодные дорожные знаки;
  • световые шнуры Дюралайт;
  • в фитолампах.

Осветительный прибор на основе светодиодов состоит из:

  • излучающего диода;
  • драйвера;
  • цоколя;
  • корпуса.

Из крупных производителей светодиодов можно выделить японскую фирму Nichia Corporation и ее подразделение Nichia Chemical. Они являются лидерами по изготовлению сверхъярких диодов синего, белого и зеленого цвета. Также изготовлением излучающих диодов занимаются компании Phillips, Cree, Seoul Semiconduction из российских можно выделить Оптоган и Светлана-Оптоэлектроника.

В Nichia Chemical впервые разработали белый и синий светодиод.

Как устроены и чем отличаются светодиоды разных типов

Светодиоды можно классифицировать по разным критериям. Основное отличие – в технологии и электрических параметрах.

Сокращение DIP пошло от слов Direct In-line Package. Такие светодиоды известны еще с конца прошлого века. Устройство представляет собой стеклянную или пластиковую прозрачную колбу размером 3 или 5 мм, в которой находится полупроводниковый кристалл. Колба является линзой и формирует направленный пучок света. Кристалл закрепляется на катоде, который с помощью провода соединяется с анодом. Из корпуса выходят контакты в виде металлических ножек, через которые светодиод и включается в схему.

По форме бывают круглые, овальные, прямоугольные. Напряжение питания – до 5 В при 25 мА.

DIP светодиоды

Обычно внутри линзы располагается один кристалл, но есть модели с двумя и более разных цветов. Такие модели могут оснащаться тремя и четырьмя выводами. Принцип работы светодиода подобного вида задает микрочип.

Dip светодиоды являются малоточными, они используются в гирляндах, для индикации, в подсветке, уличном освещении. По сравнению с SMD диодами они имеют следующие преимущества:

  • яркость;
  • направленный световой поток;
  • долгий срок службы при работе на улице;
  • потребление электроэнергии.

Основной недостаток – большой размер, от 3 мм.

Важно! С течением времени яркость свечения может уменьшаться. Это связано с деградацией кристалла и материалов, из чего делают светодиоды.

Светодиоды SMD – это приборы для крепления на поверхность. В настоящее время этот тип диодов является самым востребованным. С их появлением расширились возможности создания осветительных систем. Начали уменьшаться размеры светильника, монтаж автоматизирован.

Как устроен светодиод SMD – излучающий кристалл закреплен на подложке, от которой отводится тепло. К ней вмонтированы выходы. Внутри размещен управляющий чип. Защитой является овальная или сферическая линза из стекла или пластика.

SMD светодиоды

  • небольшая цена;
  • надежность;
  • срок службы;
  • высокая светоотдача.

SMD светодиоды в смеху включаются при помощи специального клея. Самые маленькие диоды имеют размер 0,6х0,3 мм. Максимальная яркость – 8000 кд/кв.м.

Существует технология, при которой кристалл наносится на проводящую подложку без использования корпуса. В качестве защиты используется специальный слой, который выбирается по назначению светодиодов.

Используются для подсветки интерьеров, уличных билбордов, рекламных экранов с широким разрешением.

Chip On Board (COB) светодиоды имеют большое количество кристаллов на одной подложке. Также их называют светодиодной матрицей. Сверху заливается люминофором.

  • простота монтажа;
  • хороший поток света;
  • высокий CRI;
  • разнообразие форм.
Читайте также:
Отмываем микроволновку уксусом и содой: быстро, дёшево и эффективно

COB

  • стоимость;
  • самый срок службы;
  • светоотдача ниже, чем у SMD.

КОБы активно используются в создании ярких прожекторов и в других светильниках, где требуется акцентированная подсветка.

Важно! Из-за высокого нагрева требуется силиконовая оптика. Она устойчива к высоким температурам. Перед подключением ее нужно подготовить, иначе подложка деформируется и кристалл повредится.

Как работают светодиоды: принцип действия

Соединение

Электрический ток преобразуется в свет в кристалле. Он состоит из двух полупроводников различного типа проводимости – n и p. N-проводимость обеспечивается легированием электронов в полупроводник, p – дырок.

Принцип действия светодиода заключается в появлении свечения при рекомбинации электронов и дырок в p-n переходе под действием тока, приложенного в прямом направлении. В результате перехода электронов с одного энергетического уровня на другой появляются фотоны.

Не все полупроводниковые материалы способны давать свет при рекомбинации. Для создания светодиодов используются прямозонные полупроводники, в которых разрешен прямой оптический переход зона-зона. К таким материалам относятся A3B5 (InP, GaAs), A2B4 (CdTe). В зависимости от состава можно получать светодиоды от ультрафиолетовых до инфракрасных.

Как работает светодиод, зависит от электронно-дырочного перехода. Условия пропускания света p-n переходом:

  • близость ширины запрещенной зоны к энергии кванта света;
  • минимальное содержание дефектов в полупроводниковом кристалле.

Для реализации этих требований одного p-n перехода недостаточно. Нужно создавать многослойные структуры – гетероструктуры, состоящие из нескольких полупроводников.

Получение светодиода определенного цвета

Для получения светодиода того или иного цвета используется три технологии – покрытие люминофором, использование RGB светодиодов и применение разных полупроводниковых материалов.

Покрытие люминофором

Светодиоды

Люминофором называется вещество, которое может преобразовать поглощаемую энергию в свет. Получение светодиодов путем нанесения люминофора на поверхность имеет свои преимущества:

  • простота конструкции;
  • низкая стоимость производства;
  • экономия.

К недостаткам относятся:

  • снижение светоотдачи из-за потери световой энергии;
  • влияние на цветовую температуру;
  • быстрее стареет при эксплуатации.

Люминофор используется в белых светодиодах. С помощью люминофорного покрытия создаются диоды с различной цветовой температурой.

RGB-технология

RGB-технология

Смешивание цветов по RGB технологии также помогает получить светодиоды различного спектра (обычно используются для белого). На матрице устанавливаются 3 монокристалла, каждый из них дает свой спектр RGB. Путем конструирования оптической системы цвета смешиваются и дают нужный оттенок.

  • возможность поочередного включения того или иного цвета вручную или автоматически;
  • можно вызывать разные оттенки, меняющиеся по времени;
  • создание эффектных осветительных конструкций для рекламы и дизайна.
  • неравномерность светового пятна;
  • неравномерность нагрева и отвода тепла.

Отрицательные качества вызваны расположением кристаллов полупроводника на поверхности. Из-за этого качественно организовать RGB модель сложно.

Применение различных примесей и полупроводников

Светодиодная лента

Работа светодиода напрямую зависит от материала, из которого он выполнен. Использование полупроводников с различной шириной запрещенной зоны можно добиться нужного света от диода. От ширины запрещенной зоны зависит длина волны.

Для получения приборов в инфракрасном и красном цветовом спектре используются твердые растворы на основе арсенида галлия. Оранжевые, желтые и зеленые цвета получаются при помощи фосфида галлия. Синие, фиолетовые и ультрафиолетовые изготавливаются на основе нитрида галлия.

Основные выводы

Светодиоды – это компоненты, которые активно используются во многих сферах деятельности. Их можно встретить в освещении улиц и домов, подсветке экранов мобильного телефона и компьютера, в качестве индикаторов. Строение элемента: полупроводниковый кристалл, подложка, линза и электроды.

Излучающие диоды бывают нескольких типов – SMD, DIP, COB, они различаются по конструкции и техническим характеристикам. Получить устройство нужного цвета можно с помощью RGB технологии, нанесения люминофора на поверхность и путем подбора полупроводников для кристалла. Производство светодиодов активно развивается, и появляются все новые приборы с улучшенными характеристиками.

Виды светодиодов – принцип работы, от чего зависит яркость свечения

Первые светодиоды (СД, СИД, LED) разработали в начале шестидесятых годов на смену миниатюрным лампам накаливания. Это были красные лампы с очень слабым свечением и применялись как индикаторы включения в различных приборах.

В начале девяностых, был создан синий светодиод, следом появились зеленые, желтые и белые. Сейчас светодиод один из наиболее широко востребованных осветительных элементов. Это световое устройство в пластиковом литом корпусе (разного цвета) с двумя выводами со впаянным кристаллом.

Корпус выполняет две функции – является линзой и защитным покрытием. Питание светодиода обеспечивается током, для чего в цоколь встроен преобразователь напряжения. Яркость свечения пропорциональна напряжению.

Устройство элемента

Светодиод состоит из следующих частей:

  • основание;
  • линза;
  • катод (-);
  • анод (+);
  • кристалл (полупроводниковый чип);
  • отражатель (рассеиватель).
Читайте также:
На что нужно смотреть при выборе матраса?

В основании закреплены катод и анод, сверху все устройство герметично закрыто линзой (колбой). На катоде закреплен кристалл. На контактах установлены проводники, подсоединенные к кристаллу p-n-переходом (соединительная проволока, объединяющая два проводника с разными типами проводимости).

Теплоотвод необходим для поддержания стабильной работы светодиода. В индикаторных светодиодах тепло не накапливается за счет невысокой мощности. Для осветительных – основание напрямую припаивается к поверхности для обеспечения теплоотвода.

Строение светодиодного элемента

Принцип работы диодов для чайников

Чтобы понять, как работает светодиод, нужно знать, что такое p-n-переход. Это область, в которой соприкасаются полупроводники p и n типа, в результате чего один тип проводимости переходит к другому. N тип содержит электроны проводимости как носители заряда. Полупроводник p типа носитель положительного заряда (дырки).

Анод (p типа) является положительным электродом, катод (n типа) это отрицательный электрод. Внешняя поверхность катода и анода содержит контактные металлические площадки с припаянными выводами. Когда к аноду подается положительный заряд электричества, а к катоду отрицательный, то на р-n переходе между кристаллом катодом начинает течь ток.

Если включение прямое, то электроны из n и области и дырки из p-области устремятся навстречу друг другу. В процессе легирования (обмена электронами) на границе дырочно – электронного перехода произойдет их обмен. Если отрицательное напряжение подается со стороны материала n-типа, то происходит прямое смещение. При рекомбинации (обмене) выделяется энергия в виде фотонов.

Чтобы поток фотонов преобразовать в видимый свет, материал подбирают так, что длина волны фотонов находится в пределах видимой области цветового спектра длиной волны от 700 до 400 нм.

Чтобы упрастить работу с диодными осветительными приборами или, например, гирляндами, узнайте как проверить светодиод мультиметром.

Устройство светодиода

Существующие на сегодняшний день светодиоды бывают следующих видов:

  • индикаторные – с маленькой мощностью, для подсветки в приборах;
  • осветительные – с большой мощностью, уровень освещенности соответствует обычным (люминесцентным и вольфрамовым) источникам света.

По типу соединения индикаторные делятся на:

  • тройные AIGaAs (алюминий – галлий – мышьяк) – оранжевый и желтый свет в областях видимого цветового спектра;
  • тройные GaAsP (галлий – мышьяк – фосфор) – желто-зеленый и красный свет в областях видимого спектра;
  • двойные GaP (галлий – фосфор) – оранжевый и зеленый свет в областях видимого спектра.

Светодиодные элементы различаются по типу корпуса:

  • DIP – оснащены встроенной оптической системой из линзы, кристалла и парой контактов. Устаревшая модель самой низкой мощности, используются для подсветки игрушек, световых табло;
  • Superflux или «пиранья» – аналогичные DIP, оснащены четырьмя контактами, лучше крепятся и меньше нагреваются за счет радиатора для светодиода. Используются для подсветки в автомобилях;
  • SMD – наиболее распространенный тип для множества источников света. Представляют собой чип (кристалл), смонтированный непосредственно на поверхности платы;
  • COB – усовершенствованные светодиоды SMD. Оснащены несколькими кристаллами (чипами), установленными на одну плату. Монтируются на керамические и алюминиевые основания.

SMD светодиод

Более совершенные модели СОВ все же не всегда могут заменить SMD светодиоды.

Основные технические характеристики

Диодные лампы характеризуются следующими основными параметрами:

  • яркость (интенсивность светового потока);
  • напряжение (тип используемого напряжения);
  • сила тока;
  • длина волны и цветовая характеристика.

Сравнение обычного и мощного светодиода

Яркость

Яркость воспринимается зрительными ощущениями, поскольку освещённость предмета на сетчатке глаза пропорциональна его яркости. Складывается она из нескольких параметров. называется Световой поток это количество световой энергии. Единица измерения люмен.

Единицей силы света является один люмен на стерадиан, также измеряемый в канделах: 1 cd. Измеряется яркость в милликанделах. Различают яркие (20 – 50 мкд.) и сверх яркие (20000 мкд. и выше) светодиоды белого свечения. Светодиодная яркость пропорциональна величине протекающего через него тока, т. е. чем выше напряжение, тем больше яркость.

Рекомендуем Вам также более подробно прочитать про возможности и область применения диммеров.

Напряжение

Напряжение, необходимое для работы светодиода, это не напряжение питания, а величина падения напряжения на светодиоде. Колебания напряжения питания вызывает перегорание светодиода. Напряжение напрямую зависит от цвета.

Сравнительная характеристика светодиодов разного цвета

ЦветДлина волны, нмНапряжение, В
Инфракрасныйот 760до 1,9
Красный610-760от 1,6 до 2,03
Оранжевый590-610от 2,03 до 2,1
Желтый570-590от 2,1 до 2,2
Зеленый500-570от 2,2 до 3,5
Синий450-500от 2,5 до 3,7
Фиолетовый400-450от 2,8 до 4,0
Ультрафиолетовыйдо 400от 3,1 до 4,4
Белыйширокий спектрот 3,0 до 3,7

Для нормальной работы при подключении светодиода необходимо правильно отследить ток, а не напряжение.

Сила тока

Работает светодиод на постоянном или пульсирующем токе. Поднимая или снижая интенсивность можно варьировать яркость свечения. Рабочий ток индикаторных светодиодов 20 – 40 мА. Сила тока осветительных элементов составляет от 20 мА. СОВ (на 4 чипа), например, рассчитаны на 80 мА. Одноваттные светодиоды потребляют приблизительно 300-400 мА.

Читайте также:
Реноватор Bosch: как выбрать насадки для реноватора? Особенности оснастки для аккумуляторного многофункционального инструмента

Длина волны и цветовая характеристика

Излучаемый диодом цвет зависит от длины волны светового излучения. Измеряется она нанометрами (0.000000001 метра). Монохроматическое (одночастотное) излучение связано с длиной волны, перемещающейся внутри. Границы длины волны соотносятся с основными цветами определенным образом.

Цвет излучения светодиода меняется при внесении в полупроводниковый материал активных веществ. Для получения светодиодов красного цвета в качестве полупроводников используется алюминий индий – галлий (AllnGaP), для цветов сине – голубого и зеленого спектра – индий – нитрид галлия (InGaN).Чтобы получить, например, белый свет, кристалл синего светодиода покрывают тонким слоем люминофора, который излучает жёлтый и красный свет под действием синего спектра.

В результате смешивания цветов получается белый свет. Белые светодиоды определяются цветовой температурой, измеряемой в К.

Рекомендуем Вам также ознакомиться с тем, как работает датчик движения.

Разноцветные диодные лампы

Светодиодная плата

Плата предназначена для крепления светодиодов в любом необходимом количестве и положении. Форма платы бывает:

  • прямоугольная;
  • линейка;
  • круглая;
  • квадратная;
  • звездчатая
  • произвольная.

Светодиодная плата изготавливается из диэлектрического материала. Основной функцией ее является теплоотвод.

  • металлические (односторонние, двухсторонние и многослойные);
  • изолированные металлические подложки (односторонние, двухсторонние и многослойные, жестко – гибкие).

Платы, изготовленные из алюминия, не нуждаются в вентиляторах для принудительного охлаждения. Все элементы конструкции обретают более продолжительный срок службы за счет отсутствия перегрева.

Дополнительную информацию об история возникновения и принципах функционирования светодиодных элементов смотрите на видео:

Светодиоды это один из новейших источников освещения, имеет широкий спектр применения и большие перспективы. Благодаря соотношению всех параметров светодиодный тип освещения может стать ведущим среди множества осветительных приборов и разнообразных источников света.

Светодиоды — ослепляющая темнота

Для чего я это делаю? Я просто хочу комфортный свет в квартире (офисе), я не хочу напрягать глаза, рассматривая мелкие предметы, я хочу, чтобы не уставали глаза от долгой работы за экраном. Многие мои знакомые и родственники сказали мне “большое спасибо!” за то, что “открыл глаза” на альтернативные источники света.

Начало исследования

С того момента, когда полностью перешёл на МГЛ дома, а акцентированный свет заменил на люминесцентные линейные лампы 9xx серии и КЛЛ PL-E 8W – у меня резко уменьшилась толерантность к освещению под светодиодами. Я думал, что это только моё восприятие, но нет – жена, знакомые, которые также убрали почти все светодиоды из дома, говорили тоже самое.

Вместе с моим партнёром по данному проекту было проведено исследование в области искусственного освещения. Свою точку зрения он изложил в видео. Таким образом, предлагаем вам к рассмотрению два взгляда на современное освещение.

Было просмотрено довольно много материала, но почти все общедоступные научные исследования базируются на одно и том же:

группа 50-100 человек и они говорили насколько комфортно в помещении под исследуемым источником света;

считают колбочки и палочки в отрыве от “программной” обработки данных мозгом;

не учитывают инсоляцию региона, время года и образ жизни;

ссылаются на индекс цветопередачи CRI где эталоном являются одновременно лампа накаливания и дневное небо (лампа накаливания слаба в освещении синих тонов, а небо при 7500 К слабо в освещении красных тонов);

не изучали Эффект Пуркине применимо к светодиодному освещению;

основаны на спектральной световой эффективности монохроматического излучения – кто решил что остальной спектр не нужен, загадка:

функция спектральной эффективности светового потока взвешивает воспринимаемую интенсивность света с разными длинами волн на основании зависимости чувствительности глаза человека от длины волны света. Глаз человека имеет максимальную чувствительность для света с длиной волны 550 нм в зелено-желтой части видимого спектра и менее чувствителен на его красном и синем краях.” *справочник светодиодное освещение

В 1924 году Международная комиссия по освещению (МКО) утвердила этот набор в качестве стандарта, после чего он стал международно признанным и в качестве такового используется вплоть до настоящего времени. В Российской Федерации данный стандарт также является действующим.

Читайте также:
Реноватор Bosch: как выбрать насадки для реноватора? Особенности оснастки для аккумуляторного многофункционального инструмента

Подготовка к исследованию

Собственно возвращаемся к заголовку данной статьи “светодиоды – ослепляющая темнота”, это самое полное описание того эффекта, который был обнаружен. Хочу сказать сразу, что это относится только к регионам с низкой инсоляцией и осеннем-зимнем-весенним временем года.

При массовом переходе на светодиоды, в продуктовых магазинах стало сложно отличить немытую зелёную картошку от нормальной. Но понимание того, что не так, пришло именно в метро, где массово начали переходить на светодиодное освещение, а пол и стены облицованы мрамором или гранитом.

Приведу немного измерений, сделанных на “скорую руку” в метро. Я не использовал специализированный люксметр, а ограничился ПО для смартфона Physics Toolbox Sensor Suite, данное ПО на моем смартфоне Xperia 1ii даёт погрешность около 15% в измерении (при сравнении с люксметром Radex Lupin), максимальный уровень яркости 20000лк, но так как для эксперимента важна разница в яркости, а не точность, то данного приложения достаточно.

К большому сожалению, фотокамера видит мир по другому, так что заснять данный эффект не получится. Не забываем про инерционность зрения и адаптацию к освещению, идеальный вариант находиться под источником света не менее 15 минут.

Измерения проводились “с руки”, так что не исследуется количество света попадающего на предметы и отражённого от них, но в данном случае это не влияет на результаты. Суть эксперимента доказать, что при одинаковой освещённости

Исследование

метро Санкт-Петербурга

Из множества станций была выбрана: Садовая, Сенная площадь и станция Технологический институт.

Станция Садовая освещена люминесцентными лампами t5 (цветовая температура 3000k), освещённость в вестибюле составляет ~150лк – смотрим внимательно на мрамор/гранит, текстуры на нем хорошо различимы, видно тонкие прожилки.

пример измерения яркости смартфоном

пример измерения яркости смартфоном

Теперь переходим на станцию Сенная площадь, от яркого света начинает “резать” глаза (цветовая температура ~4000k), освещённость >360лк – смотрим на пол и стены, контрастный рисунок хорошо различим, но мелкие детали и полутона сливаются, и приходится напрягать зрение, при этом поверхность сильно бликует.

Станция Технологический институт (на дату 08.12.2021) – освещена лампами МГЛ (разной степени “усталости”), освещённость ~200лк – очень хорошо видно рисунок и мелкие прожилки на мраморе/граните, детализация выше, чем при освещении люминесцентными лампами.

Домашний эксперимент

Для эксперимента дома вам потребуется лампа накаливания, очень советую использовать низковольтные галогенные лампы, толстая спираль и номинальное напряжение даст более приятный спектр, с большим количеством фиолетового и зелёного в спектре, светодиодные лампы лучше использовать тёплые, также для сравнения можно добавить качественную люминесцентную лампу.

Суть эксперимента предельна простая: создать освещённость в 200лк и 800лк, посмотреть, как выглядят под этим светом мелкие предметы и сложные текстуры. Данный эффект будет усиливаться со временем. Данный эксперимент лучше проводить вечером, когда солнце уже сядет за горизонт.

Промежуточный вывод

Для того, чтобы разглядеть мелкие предметы или текстуры поверхности, приходится напрягать зрение или сильно увеличивать яркость освещения светодиодами, что приводит к нежелательным бликам поверхности и напрямую влияет на экономию электроэнергии и энергоэффективность, также сильно возрастает расход витамина A в организме (об этом в следующей статье). И влияет на это фиолетовый, UV-A, ближний инфракрасный. Не забываем про “программную” обработку данных мозгом, видимо края видимого спектра являются неким триггером о том, что солнце в небе.

Хочу привести таблицу эффективности популярных источников света, если честно устал от рекламы светодиодов с КПД в 90%.

*1 данная таблица 2010 года

*1 данная таблица 2010 года

Учитывая, что новые HiCRI светодиоды делают на синем кристалле 460нм, а не 440нм, как ранее – то имеем ещё более “ужатый” видимый спектр. Кто решил что этого “хватит” человеческому зрению – большая загадка. Именно с самого своего начала человек жил под солнечным светом и глаз адаптировался именно к нему.

Исходя из данных таблицы, можно сделать вывод, что лампой с самым полным спектром, приближенным к солнечному – является лампа МГЛ.

Почему тёплый свет?

Почему лучше лампы тёплые? В интернете гуляет такой график “комфортности” освещения в зависимости от ЦТ – кривая Круитхофа

кривая Круитхофа

кривая Круитхофа

Кривая Круитхофа не содержит фактических данных, которые стали основой для её построения, а лишь указывает на приблизительные соотношения освещённости и цветовой температуры для комфортного искусственного освещения. В связи с этим, научная ценность кривой неоднозначна.

С него хорошо видно, что если мы хотим “комфортный” холодный свет, то освещённость должна быть >1000лк в помещении, а это уже затратно. Верить в это или нет, вопрос исключительно личного мнения – например, я с ней согласен, только с одним условием – этот график совершенно не подходит для светодиодного освещения.

Читайте также:
На что нужно смотреть при выборе матраса?

Что дальше

Фанатам светодиодного освещения, разочарованным данной статьёй, могу лишь только посоветовать SORAA VIVID стоимостью >2000 руб за 470 люмен, в которой исправлена часть проблем светодиодного освещения ценой уменьшения светоотдачи до тем, кто хочет получить по-настоящему комфортное освещение, предлагаю немного подождать.

Дополнительная литература

*1 Очень рекомендую к прочтению – справочник светодиодное освещение – 2010 Koninklijke Philips Electronics N.V его составляли на заре светодиодного освещения, с того времени мало чего изменилось.

По желанию можно почитать, но мне понравилась меньше – Элементарная светотехника – 2013 Варфоломеев Л.П.

Soraa LED – новый проект Сюдзи Накамура, изобретателя синего светодиода. Данный проект направлен на устранение текущих проблем светодиодного освещения, на базе синего кристалла и жёлтого люминофора.

Часть 2. Светодиодное освещение, проблема левой стороны (уже скоро)

Часть 3. Светодиодное освещение, проблема правой стороны (уже скоро)

upd 12.2021 Как показала длительная эксплуатация и отзывы людей, участвующих в тестировании данных светильников. Лишь некоторая часть плафонов из массмаркета пригодна для использования вместе с лампами МГЛ, хотя это в той или иной степени относится ко всем источникам света. При высоком световом потоке данных ламп, возникают неприятные артефакты. Свет становится неуютным. Особенно хорошо это заметно при использовании молочных плафонов сделанных по технологии химического метода матирования.

В связи с большим количеством писем по теме #мглдома, будет представлен большой пост с популярными вопросами, ответами и рекомендациями, пока не решил где размещать

Светодиоды: виды и схема подключения

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode).

Содержание статьи

Устройство светодиода

Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.

Устройство светодиода

Как работает светодиод?

Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.

Виды и основные параметры светодиодов

На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.

По назначению светодиоды разделяют на два вида – индикаторные и осветительные.

  • светодиоды SMD;
  • сверхъяркие Super Flux “Piranha”;
  • DIP светодиоды (Direct In-line Package);
  • Straw Hat («соломенная шляпа»).
  • COB (Chip On Board) светодиоды;
  • SMD LED;
  • филаментные (Filament LED).

Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:

  • DIP-светодиоды. Кристалл-излучатель находится в выводном корпусе, который чаще всего представляет собой выпуклую линзу. Минус – малый угол рассеивания излучения.
  • «Пиранья» – излучатель сверхвысокой яркости с четырьмя выводами, обеспечивающими его удобное крепление на плате. Востребован для подсветки приборов в автомобилях и в рекламных вывесках.
  • «Соломенная шляпа». Цилиндрический двухвыводный прибор со значительным углом рассеивания излучения и увеличенным диаметром линзы. Применяется в декоративных конструкциях и светосигналах тревоги.
  • SMD-светодиоды. Приборы сверхвысокой яркости располагаются в корпусах, рассчитанных на SMT-монтаж. В их маркировке указываются размеры в дюймах (их сотых долях) или в мм. На базе SMD-светодиодов изготавливаются светодиодные ленты.

Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:

  • cool white – холодный;
  • warm white – теплый.

Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.

Применение светодиодов

Такая продукция активно применяется в разных областях: световая реклама, домашние и промышленные осветительные приборы, автомобильная светотехника, светофоры и дорожные знаки, дизайн помещений, ландшафтная и архитектурная подсветка, а также многое другое.

  • значительная длительность эксплуатации;
  • экологическая безопасность;
  • высокая надежность и безотказность;
  • экономия электроэнергии;
  • высокое качество освещения;
  • низкие эксплуатационные расходы.
Читайте также:
Отмываем микроволновку уксусом и содой: быстро, дёшево и эффективно

Основные правила подключения светодиодов

Конструкция светодиодов рассчитана на их подключение только к источникам постоянного тока с соблюдением полярности. Существует три варианта определения полярности:

  • По длине ножки (кроме SMD). Более длинная ножка является катодом, а короткая – анодом. В SMD-светодиодах имеется срез (ключ), который всегда располагается ближе к катоду.
  • С помощью мультиметра. Прибор устанавливают в режим «Прозвонка». Красный и черный щупы устанавливают на выводы. Если прибор засветился, то, значит, что красный щуп был подключен к аноду, а черный – к катоду. Если свечение не возникло, значит, надо поменять положение щупов. Если результат не изменился (свечение отсутствует), значит, прибор вышел из строя.

Основные характеристики светодиодов

Две главные характеристики, указываемы в паспорте светоизлучающего прибора:

  • Падение напряжения на приборе. Типичное значение – 3,2 В. Также для каждого светодиода существуют максимально допустимые напряжения Umax и Umaxобр – для прямого и обратного включений.
  • Номинальный ток. Обычно эти приборы рассчитаны на силу тока в 20 мА.

Способы подключения

Простейший вариант – подключение к низковольтному источнику постоянного тока.

Самый удобный и безопасный вариант – подключить светодиод к батарейке или аккумулятору с помощью включения в схему маломощного резистора. Его функция – ограничение тока, протекающего через p-n-переход, определенным значением. Без этого элемента LED быстро утратит рабочие свойства.

Светодиоды: виды и схема подключения

Резистор выбирают по сопротивлению и мощности. Расчет сопротивления по формуле:

R = (Uпитания – Uпаспорт.)/Iном., Ом, в которой:

  • Uпитания – напряжение электропитания, В;
  • Uпаспорт. – падение напряжения, паспортное значение, В;
  • Iном. – номинальный ток.

Полученное значение округляют в большую сторону до ближайшей номинальной величины из ряда Е24. После этого рассчитывают мощность, которую должен рассеивать резистор.

P = Iном. 2 х R, где R – выбранное по таблице значение сопротивления.

Провести все эти действия можно быстро и просто с использованием онлайн-калькулятора.

Как подключить светодиоды к сети переменного тока 220 В через блок питания

Существует несколько типов блоков питания:

  • Стабилизированные источники постоянного напряжения для светодиодов на 5 Вольт и 12 Вольт. При колебаниях параметров сети напряжение на выходе такого источника питания остается постоянным и равным заявленной в паспорте величине. LED-светильники подсоединяют через резисторы.
  • Драйвер – импульсный блок питания со стабилизированным током. Характеристики, которые учитывают при его выборе: максимальное и минимальное выходное напряжение, выходной (рабочий) ток. В драйвере присутствует схема, стабилизирующая ток при скачках входного напряжения 220 В. При подключении светодиодного излучателя к драйверу резистор не требуется.

Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

При подключении нескольких светоизлучающих приборов к источнику питания может использоваться два варианта соединения – последовательное и параллельное.

Последовательное соединение представляет цепь полупроводниковых приборов, в которой катод первого излучателя спаян с анодом следующего – и так далее. Через все элементы последовательной цепи протекает ток одного значения, а падение напряжения суммируется. Мощность БП выбирается равной или превышающей сумму мощностей каждого элемента.

Минусы последовательного соединения:

  • При значительном количестве элементов цепи необходимо выбирать БП большого вольтажа.
  • При выходе из строя одного LED-диода перестает работать вся цепь.

В длинных лентах на 60-70 диодов на каждом элементе происходит падение напряжения примерно на 3 В, то есть такие ленты можно присоединять к сети 220 В через выпрямитель.

При параллельном подсоединении напряжение на всех элементах цепи будет равным, а суммируются токи каждого LED. Основная проблема в данном случае состоит в том, что LED-светильники, даже из одной партии, часто имеют различные характеристики. Поэтому, если поставить один общий резистор, на лампочки может подаваться ток разного значения, вследствие чего некоторые элементы будут светить слишком ярко, а некоторые – тускло. Решение проблемы – установка отдельных резисторов для каждого диода.

Минусы параллельного подключения:

  • большое количество элементов цепи из-за необходимости использования индивидуальных резисторов для каждого диода;
  • существенный рост нагрузки при перегорании одного LED-диода (если используется один мощный резистор на всю цепь).

Это самый подходящий вариант соединения светодиодов, поскольку он позволяет хотя бы частично скомпенсировать недостатки последовательного и параллельного подключений. В этом случае параллельно соединяются цепочки последовательно расположенных элементов. Этот способ применяется в современных елочных гирляндах или лентах. Преимущество такого решения: если даже выйдут из строя одна или несколько параллельных цепочек, остальные будут исправно светить.

Ссылка на основную публикацию